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Abstract 

High-performance computing is an increasingly important topic in the world of finance, 

particularly in the field of options pricing. As CPU performance plateaus, it is imperative that 

financial institutions look towards alternative hardware, such as Field Programmable Gate 

Arrays (FPGAs), to satisfy their demands. This thesis explores the feasibility of using FPGAs 

to accelerate options pricing libraries. Specifically, we illustrate efficient implementations of 

the Binomial Trees and Monte Carlo options pricing algorithms on an FPGA. We 

demonstrate how mathematical approximations such as the Taylor expansion can be used to 

further accelerate these algorithms. Furthermore, we compare FPGA implementations against 

a CPU implementation in order to determine whether the FPGA implementations produce an 

accurate result whilst minimising the energy use and runtime of the algorithm.  

 

A proof of concept was developed on a Zynq-7020 FPGA and compared against a Cortex-A9 

CPU. Following this, the algorithms were ported to an Alveo u200 data centre card and 

compared against an Intel Xeon E5649. We achieved a speedup of as much as 22x on the 

Zynq-7020 and as much as 20x on the Intel Xeon E5649. The FPGA implementations of the 

Binomial Trees algorithms were accurate to 4 decimal places, whereas the Monte Carlo 

algorithm was accurate to 5 decimal places. The energy comparisons were largely inaccurate, 

due to a lack of appropriate performance counters on these CPUs, and therefore this analysis 

was inconclusive.  
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1. Introduction 

The purpose of this project is to determine the usability of FPGAs to accelerate numerical 

libraries. Specifically, we will explore how FPGAs can be used to accelerate option pricing 

models. Over the last decade, a significant amount of research into the application of FPGAs 

in financial services has been conducted. This research has mainly focused on comparing an 

FPGA implementation against a CPU implementation of the same algorithm. As identified by 

[1], it is important to not only compare CPU implementations against FPGA 

implementations, but also compare different FPGA implementations against each other. By 

doing so, investment banks can make more informed decisions about the algorithms that they 

implement to ensure that they get accurate results as quickly as possible whilst minimising 

energy consumption. 

 

Throughout this project, we implemented binomial bree algorithms to calculate the price of 

both European and American options. In addition, a Monte Carlo algorithm was implemented 

to calculate the price of European options. These algorithms were first implemented on a 

CPU following which the execution time, energy use and accuracy were measured. An initial 

proof of concept was then developed and executed on a Zynq-7020 FPGA. Finally, all 

algorithms were ported to run on an Alveo u200 FPGA. The execution time, energy use and 

accuracy of both FPGA implementations were recorded after this. Due to the low resource 

usage of the binomial trees algorithm, an additional IP was created that could price European 

and American options in parallel. 

 

The FPGA implementations of binomial tree algorithms were accurate to three decimal 

places, whereas the Monte Carlo algorithm was accurate to four decimal places. The 

European binomial trees algorithm ran 7x faster on the Zynq-7020 in comparison to the 

Cortex-A9 and 3x faster on the Alveo u200 in comparison to the Intel Xeon E5649. The US 

binomial trees algorithm ran 20x faster on the Zynq-7020 in comparison to the Cortex-A9 

and 1.6x faster on the Alveo u200 in comparison to the Intel Xeon E5649. The combined 

binomial trees algorithm ran 22x faster on the Alveo u200 than on the Intel Xeon E5649. The 

Monte Carlo algorithm ran 1.1 faster on the Zynq-7020 in comparison to the Cortex-A9 

however, it ran 2x slower on the Alveo u200 in comparison to the Intel Xeon E5649. We 

have suggested several improvements to this algorithms design which optimise it further to 

run on an FPGA. Due to the lack of performance counters on these CPUs, the energy 

calculations were inaccurate and therefore our conclusions were inconclusive.   
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2. Background 

2.1 Field Programmable Gate Arrays 

An FPGA is a programmable logic device consisting of a matrix of configurable logic blocks 

connected via programmable interconnects [2, 3]. FPGAs are a form of reprogrammable 

hardware that can be configured by a user to perform a desired function [2, 3]. This makes 

them much more versatile when compared to similar hardware such as ASICs that are 

designed to perform specific functions. 

 

An FPGA consists of three components: the programmable logic component which expresses 

a logic function; the programmable I/O component which provides an external interface, and 

the programmable interconnects which connects the different parts of the circuit together [4]. 

The power of FPGAs comes from their ability to simultaneously perform parallel functions 

and digital clock management functions that supply several high-speed clocks [5]. 

 

Due to their reprogrammable and parallel nature, FPGAs have become a topic of interest in 

several domains ranging from consumer electronics to HPC.  A molecular dynamics OpenCL 

kernel was proposed in [6] that used 80% of the FPGAs resources and achieved a speed-up of 

18x in comparison to a CPU implementation. Several machine learning kernels have been 

accelerated using FPGAs as shown in [7, 8, 9, 10, 11]. These kernels can achieve as much as 

a 61-times speed-up when compared to a CPU implementation. The field that we consider is 

reviewed in section 2.2.  

 

The design flow for FPGAs varies drastically in comparison to a software design flow. 

FPGAs are typically programmed using a HDL such as Verilog [12]. These languages have a 

steep learning curve and take a long time to master [12]. An alternative is to write HLS which 

generates hardware modules from a high-level language such as C. In this case, the designer 

creates a module written in C/C++ and compiles it as a software program to verify it is 

working correctly. Following this, the designer can add directives to describe how sections of 

the code should behave on hardware. The HLS code can then be converted to RTL code 

using software such as Vivado HLS [4, 13]. A designer can significantly reduce development 

time by developing reusable modules called IP [4]. The hardware and software used 

throughout this thesis are discussed in section 2.3. 

 

2.2 Field Programmable Gate Arrays in Finance 

HPC is becoming an increasingly important topic within the world of finance. This is largely 

because, following the 2008 financial crisis, financial institutions are now required to deliver 

valuation and risk simulation results to regulatory bodies. As part of this, institutions are 

required to price exotic derivatives using appropriate market models [14]. For many of these 

models, no closed-form solution exists, and the solution must be approximated; this is a 

computationally expensive process and can last several days on state-of-the-art systems [14, 

15]. HFT has added additional computational demands as investors aim to minimise the 

runtime of algorithms that are responsible for pricing assets and placing buy and sell orders 

[16]. As chip manufacturers find it increasingly hard to keep up with Moore’s law, it is 

imperative that financial institutions look towards hardware to satisfy their demands [17]. 
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In finance, an option is a contract that gives the owner the right to buy or sell an underlying 

asset within a specific timeframe. There are two types of option contract: a call option which 

gives the holder the right to buy the asset at a stated price; and, a put option which gives the 

holder the right to sell the asset at a specified price [18]. Several forms of options, such as 

European and American, also exist; each of these forms place different restrictions on when a 

holder can exercise their options and therefore changes how they are priced [18]. A European 

option is a point in time instrument as it can only be exercised on the expiration date. 

American options are a continuous time instrument, as they can be exercised at any point up 

to and including the expiration date.  

 

There are several methods for pricing options, the most popular of which is the Black-

Scholes pricing model. The Black-Scholes model is a differential equation that calculates the 

value of an option using the current stock price, expected dividends, the strike price, expected 

interest rates, time to maturity, and expected volatility [18, 19]. The Heston model is another 

mathematical model for pricing options. In this model, volatility is stochastic in nature 

whereas in the Black-Scholes model it is constant [20]. Both models are calculated at a point-

in-time and therefore only apply to European options. Variants of these models exist for 

American options, but because of their continuous nature, the formulae are no longer 

expressed in closed form [21]. The formulae for both models are presented in Appendix 1. 

 

There exist several methods that can be used to calculate the price of several different 

options. For example, the Monte Carlo method can be used to approximate solutions to the 

Black-Scholes and Heston models for both European and American options [22]. The Monte 

Carlo method is used to simulate stochastic processes such as the underlying asset price in the 

Black-Scholes model, and the underlying asset price and volatility in the Heston model [23]. 

The Black-Scholes Monte Carlo algorithm beings by generating n random paths which 

simulate the price movements of some underlying asset; these paths typically follow 

Geometric Brownian Motion. Each path is then discounted in order to determine its payoff. 

The price of the option is determined by calculating the average of all payoffs [24]. The 

pseudocode for the Black-Scholes Monte Carlo algorithm is presented in Appendix 2. 

 

Tree-based pricing models also offer a solution for pricing complex options, such as 

American options. The most popular based tree-based method for pricing options is the 

binomial tree model as it is simple and efficient [25, 19]. This model works by discretising 

both time and the price of the underlying asset [25]. A step away from the root of the tree 

towards a leaf represents one time-step and each node represents the price of the underlying 

asset at that time-step. After generating the binomial tree, the value of the option at each time 

step can be calculated. The value of the option at the root of the node can then be calculated 

by combining each node’s option value with the probability that an asset appreciates [25, 19]. 

The pseudocode for European and US binomial tree solvers is given in Appendix 2. 

 

When calculating the value of a financial asset, it is important to be as precise as possible; a 

calculation that is out by even a few pence could result in significant losses as assets are 

typically traded in large volumes. Traditionally, option pricing calculations make use of 

floating-point arithmetic, which is costly and takes many clock cycles to complete. This is 
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because floating-point numbers require extra bits to express a number, making them costly in 

terms of storage. Moreover, extra operations are required to compute the differences between 

the exponential and mantissa values [26, 27]. These costs can be mitigated with the use of 

fixed-point arithmetic; however, this can reduce the accuracy of the solution [3, 27, 28]. The 

trade-offs between speed-up, energy usage and accuracy should be carefully considered when 

implementing fixed-point arithmetic. 

 

A large amount of research into the usability of FPGAs to accelerate options pricing 

calculations has been conducted in recent years. [29] implemented a hybrid CPU-FPGA 

accelerated Monte Carlo options pricing algorithm using the Heston model. Their 

implementation ran 2x faster than a CPU-only implementation whilst using 89% less energy. 

A finite difference solver for the Black-Scholes options pricing method was presented in [30] 

with a speed-up of 8x. A Least-Squares Monte Carlo algorithm for pricing American options 

was presented in [31] which achieved a speed-up of 20x with significant energy savings. It 

should be noted that these results are affected by the CPU and FPGA used during the 

comparison. 

 

2.3 Resource Requirements 

The project began by developing a proof of concept, where we implemented algorithms on a 

Pynq-Z2 development board. The purpose of this was to quickly port the algorithms from 

CPU to FPGA and determine whether there was any benefit to running these algorithms on 

an FPGA. The Pynq-Z2 board brings the productivity benefits of Python to FPGA 

development, which allowed us to quickly develop the proof of concept. Moreover, the 

resources on the Pynq-Z2 board are more than enough for an initial proof of concept. This 

board has a 650-MHz dual core Cortex-A9 processor, 512MB DDR3 memory and a 

ZYNQ7020 FPGA. The FPGA consists of 53,200 look-up tables, 106,400 flip-flops and 220 

DSP slices [32]. 

 

One of the intentions of this research is to inform investment banks of the benefits to using 

FPGAs to accelerate options pricing libraries. Because of this, after developing the proof of 

concept, we ran the algorithms on a larger FPGA that is more representative of the hardware 

that an investment bank would use. For this stage, we ran the algorithms on an Alveo u200 

data centre card which was installed in a server (named livfpga) at the University of 

Liverpool. This card contains an XCU200 FPGA that consists of 892,000 look-up tables, 

1,831,000 flip-flops and 5,867 DSP slices. A 2.53GHz six-core Intel Xeon E5649 processor 

was installed alongside the Alveo u200 [33]. 

 

The project also has several software requirements. Firstly, when developing for the Pynq-

Z2, we used Vivado HLS to write our HLS code, generate RTL code, and create IPs. In 

addition, we used the Vivado Design Suite to generate block diagrams and create bitstreams 

for the Pynq-Z2. We also need the Pynq-Z2 board image which installs the development 

environment on the board. When developing for the Alveo u200, we used the SDAccel 

Development Environment which allowed us to write HLS code and generate bitstreams for 

this device [34, 35].  
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3. Aims and Objectives 

3.1 Statement of Hypotheses 

3.1.1 Null Hypothesis 

1. FPGA implementations of options pricing algorithms will run slower than CPU 

implementations. 

2. FPGA implementations of options pricing algorithms will be less energy efficient 

than CPU implementations. 

 

3.1.2 Alternative Hypothesis 

1. FPGA implementations of options pricing algorithms will run faster than CPU 

implementations. 

2. FPGA implementations of options pricing algorithms will be more energy efficient 

than CPU implementations. 

 

3.2 Aims 

3.2.1 Primary Aims 

1. Determine the speed-up, accuracy and energy efficiency of FPGA implementations of 

Monte Carlo and binomial tree algorithms to price European options in comparison to 

CPU implementations. 

2. Compare the FPGA algorithms to determine which yields the greatest speed-up and 

accuracy whilst minimising energy use. 

3. Analyse floating-point versus fixed-point arithmetic operations to determine the trade-

off between speed-up, accuracy and energy usage.  

 

3.2.2 Secondary Aims 

1. Implement both Monte Carlo and binomial trees algorithms to price American options 

and perform the analysis described above. 

2. Develop an FPGA accelerated options pricing library consisting of the algorithms 

explored throughout this project. 

3. Modify the implemented algorithms to price options under the Heston model and 

perform the analysis described above. 

4. Extend the analysis to incorporate exotic options, such as Asian options. 

 

3.3 Objectives 

1. Develop a CPU implementation of the Monte Carlo and binomial trees algorithms to 

approximate the solution of the Black-Scholes option pricing model for European 

options. 

2. Develop an FPGA implementation of the Monte Carlo and binomial trees algorithms 

to approximate the solution of the Black-Scholes option pricing model for European 

options. 

3. Measure and record the run time, accuracy and energy use of these algorithms for 

both the CPU and FPGA implementations. 

4. Modify the algorithms to use fixed-point, rather than floating-point arithmetic and 

measure the speed-up, energy use and accuracy of these implementations. 
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4. Design 

The original project design, as proposed in Assignment 1, can be found in Appendix 3. Any 

changes to the original design will be discussed in section 5.5. 

 

4.1 Project Management 

A Github repository [36] was setup to maintain a backup of all the code written throughout 

this project. This had the added benefit of ensuring that new parts of the system integrate 

seamlessly into the old system. 

 

A backup of the Pynq-Z2 board was also regularly maintained, just in case the operating 

system had to be reinstalled. The contents of the board were regularly backed up to Google 

Drive. Similarly, all assignments and other important documents were also backed up to 

Google Drive. 

 

Trello [37], an online project management tool, was used to manage the workload throughout 

this project. All tasks were entered on a Trello board and were labelled as either: to do, 

complete, in progress or on hold. A snapshot of this is given in Appendix 4. 

 

4.2 Experimental Design 

The project began by developing a proof of concept for the mentioned algorithms on a Pynq-

Z2 development board. This involved implementing a Monte Carlo algorithm and binomial 

trees algorithm to approximate the solution to the Black-Scholes formula for pricing 

European options. The binomial trees algorithms run throughout this stage have a maximum 

height of 30,000 due to the limited BRAM available on the device. When performing Monte 

Carlo simulations, we only stored the simulated steps for each path on the device. This 

allowed us to perform large simulations, for example simulating 1,000,000 paths with 1,000 

steps, during this stage. 

 

Following this, the algorithms were ported to run on an Alveo u200 card. Our algorithms 

should run faster on the FPGA installed on this card due to it having more resources and a 

higher clock speed. Despite the Alveo u200 having more BRAM than the Pynq-Z2, we will 

keep the maximum tree height at 30,000. This is because there is little to no benefit to having 

a larger tree height as shown in section 6.1. Similarly, the size of our Monte Carlo 

simulations will remain the same. The output of each algorithm on the Pynq-Z2 and Alveo 

u200 was recorded and compared to ensure that the algorithms still worked correctly. 

 

When conducting our experiments, each algorithm was run a total of 5 times with the same 

starting parameters. This allowed us to determine the average time it takes the algorithm to 

run, as well as identify the maximum and minimum run times. The experiments to determine 

accuracy were performed once. Due to the lack of appropriate performance calculators, the 

energy measurements were also only performed once. 
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4.3 Experiments to be Performed 

Experiments were performed to determine the run time, accuracy and energy use of the 

mentioned algorithms. The total run time of our algorithms were measured and, where 

possible, times relating to data transfer and kernel runtime were also measured. On the Pynq-

Z2 board, these times were measured using Python’s datetime function [38]. When working 

with the Alveo u200, the kernel runtime was measured using OpenCL’s event profiling [39].  

Timings for the CPU implementation, and within the host code for the Alveo u200 were 

measured using the gettimeofday() function in C++ [30].  

 

The accuracy of the FPGA implementations was determined by comparing their output 

against their respective CPU implementations. The outputs of both the Pynq-Z2 and Alveo 

u200 implementations were also compared to ensure that no accuracy was lost when moving 

between the two platforms. At the beginning of the project a program was developed to 

calculate the closed form solution to the Black-Scholes formula. To assess the quality of the 

solution from the European Monte Carlo and European binomial trees algorithms, we can 

compare them against the closed form solution. This will form part of our analysis when 

comparing the algorithms against one another. We cannot do the same for the US versions of 

these algorithms as no closed form solution exists. 

 

Algorithm Closed Form Solution Exists? 

European Monte Carlo Yes 

European Binomial Tree Yes 

US Monte Carlo No 

US Binomial Tree No 

Table 1: Summary of Algorithms and their Solutions 

 

A USB tester was used to measure the energy usage of the Pynq-Z2 board [41]. A downside 

to this is that we are measuring the energy usage of the whole board, not just the CPU or 

FPGA. Due to the age of the CPU installed in the livfpga server it was not possible to 

determine its energy usage during runtime. We therefore estimate the energy use of the Intel 

Xeon E5649 by considering the TDP of the processor. A script to determine the energy usage 

of the Alveo u200 was developed by the primary supervisor of this project. This works by 

polling the device once per millisecond and measuring its power usage. A Python script was 

then developed to integrate the power over time and determine the energy use. All energy 

measurements were made using optimised versions of the code; the binomial trees algorithms 

used a depth of 30,000 and the Monte Carlo simulations had 1,000,000 paths with 100 steps 

per path. 
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4.4 Analysis of Results 

After developing the proof of concept, we compared the accuracy, runtime and energy usage 

of the implemented algorithms on the Cortex-A9 against the Zynq-7020 FPGA. The same 

comparisons were made when moving from the Zynq-7020 to the Alveo u200 however, we 

compared the results from the Alveo u200 against the Intel Xeon E5649. We also compared 

the accuracy of the algorithms on the Zynq-7020 against the accuracy of the algorithms on 

the Alveo u200. This analysis allowed us to either accept or reject the null hypothesis 

presented in section 4.1.1. Furthermore, this analysis fulfilled the requirements to satisfy the 

first primary aim of this project. 

 

Following this, we compared the FPGA implementations against one another. The purpose of 

this analysis is to inform investment banks about which algorithm they should implement. To 

do this, we compared the output of both the European binomial tree and European Monte 

Carlo algorithms against the closed form solution from the Black-Scholes formula. In 

addition, we also considered the runtime and accuracy of these algorithms. This satisfies the 

second primary aim. 

 

Finally, we analyse the accuracy, runtime and energy use of algorithms when using fixed-

point arithmetic instead of floating-point arithmetic. This will provide insight into the trade-

offs when using fixed-point arithmetic and satisfy the third primary aim of the project. 

 

4.5 Changes from Original Design 

The initial project design aimed to explore Monte Carlo algorithms for pricing both European 

and American options under Black-Scholes and Heston conditions. The initial project scope 

was too wide as it failed to account for the number of skills that had to be acquired and the 

amount of work that had to be done to optimise algorithms to run on an FPGA. Because of 

this, the scope of the project was narrowed. The updated design focuses on exploring both 

Monte Carlo and binomial trees algorithms for pricing European options under Black-Scholes 

conditions. Exploring these algorithms for pricing American options and under Heston 

conditions were made desirable aims. Similarly, combining these algorithms into a library 

was also made a desirable aim.  
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5. Realisation 

5.1 Zynq-7020 and Alveo u200 Implementation 

The Zynq-7020 FPGA used throughout this project was installed in a Pynq-Z2 board. Pynq is 

an open source project, developed by Xilinx, that provides the productivity benefits of Python 

to embedded systems designers. The designer first develops an IP in Vivado HLS, imports it 

into a block design in Vivado Design Suite and interacts with the generated bitstream file 

through a Jupyter notebook [41]. 

 

When designing an IP in Vivado HLS, we start by defining a top-level function, which is 

equivalent to the main() function in C. Following this, we must 

write several interface pragmas, which provide our IP with access to global memory. An 

example of this is shown below in figure 1. 

 

 

Figure 1: Defining Interface Pragmas in Vivado HLS 

  

In this case, we have both m_axi and s_axilite ports. The m_axi ports are used for data input 

and output, whereas the s_axilite ports are used for configuring the IP at runtime [42]. With 

the top-level function and memory interfaces defined, we can write the rest of our algorithm 

as a normal C/C++ program. Following this, the IP is compiled for the target device. Figure 2 

below shows the design flow for the Zynq-7020 and Alveo u200. These are detailed further in 

appendix 5. 
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Figure 2: Design Flow of Zynq-7020 and Alveo u200 
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5.2 Optimising Code for FPGA 

Both the Zynq-7020 and Alveo u200 have access to two types of memory: DDR and BRAM. 

BRAM memory is situated on the device itself, whereas DDR memory is not. To access DDR 

memory, the FPGA must communicate with it via a DDR channel. This can cause a 

significant bottleneck to performance if the IP must access DDR memory multiple times 

whilst it is executing. Therefore, it is best to use BRAM memory whilst the IP is executing 

[45]. 

 

An effective way to take advantage of this is by having a global read, computation and global 

write phase in the top-level function of the HLS code. We read all values from global 

memory and store then in BRAM during the global read phase. This reduces the number of 

times we have to accesses global memory during computation. As computation occurs, we 

store the computed values on BRAM. These values are then written back to global memory 

so they can be accessed by the host. A downside to this method is that the amount of BRAM 

memory available tends to be a lot less than the amount of DDR memory available; which 

can significantly limit the size of our algorithms. If this is the case, we can use a technique 

called buffer read-write. In this case, we set our buffer size to a constant value, say 256. We 

then read in 256 values from DDR memory, perform 256 computations and store the results 

in BRAM, finally we do a burst write to place these values in DDR memory. This can be 

further optimised by writing the computed set of values back to global memory as we are 

calculating new values. By doing this, we overcome the memory limitations of BRAM whilst 

overcoming the bottleneck of reading and writing from DDR memory [46]. 

 

Once an IP has been optimised for global memory accesses, we can further increase its 

performance by increasing the local memory bandwidth. In Vivado HLS, each array is 

assigned a single port which can be used to write data to, or read data from, the array. This 

can cause bottlenecks if the IP must perform lots of read and write operations on an array. We 

can use the array_partition pragma to split the array into several smaller arrays, which 

effectively increases the number of ports available for read and write operations. By 

increasing the number of ports available, we increase the bandwidth for operations on local 

memory [47]. 

 

Loop pipelining and loop unrolling can be used to improve the performance of IP by 

exploiting parallelism between loop iterations. When executing sequential code, any given 

iteration in a loop can only execute once the previous iteration is complete. By pipelining a 

for loop, operations in different iterations of the for loop can be performed concurrently, as 

shown in figure 3 below [48]. 
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Figure 3: Loop Pipelining [48] 

 

Here we can see that with loop pipelining the number of clock cycles between both read 

operations has been reduced from 3 to 1. When pipelining for loops, we should ensure that 

the initiation interval is as low as possible; by doing so, we reduce the number of clock cycles 

between the start of each consecutive loop iteration. When synthesising an IP design, Vivado 

HLS/SDAccel will always try to pipeline for loops with an initiation interval of one. 

Initiation interval can be limited by several factors such as loop carried dependencies and 

limited resources [48]. 

 

By unrolling a loop, we effectively create multiple copies of the loop in the RTL design, 

which can be executed in parallel. When specifying the unroll pragma, the loop will either be 

fully or partially unrolled. When the loop is fully unrolled, a copy of the loop is created for 

each iteration of the loop. If the loop is bound by a variable (i.e. the number of iterations is 

not defined during compilation), it is not possible to fully unroll the loop and it must be 

partially unrolled [48]. 

 

  



 

13 

 

5.3 Interesting Aspects of Implementation 

5.3.1 Binomial Tree – European and American Options 

 
Figure 4: Initial Resource Usage for the European Binomial Tree Algorithm 

 

When developing IP for FPGAs, it is important to manage resource usage to ensure that the 

design fits on the FPGA. To begin, we implemented the binomial tree algorithm directly from 

the pseudocode shown in appendix 2. As shown in figure 4 above, the resource usage 

exceeded the limits of the device. This was due to the exp(x) and pow(a, b) functions used in 

the design. 

 

1. for(int i = 0; i < height; i++) { 

2.     St[i] = S * pow(u, (height-i)) * pow(d, i); 

3. } 

Figure 5: Binomial Tree Formation 

 

To reduce the resource usage, we first removed the power functions, shown in figure 5 above, 

from our design. The first power calculation raises the constant u to the power height down to 

1 and the second raises the constants d from the power of 0 to height-1. A pow(a, b) is called 

in each loop iteration, a lot of work is being repeated. This can be reduced by incorporating 

the power calculation into the for loop itself, as shown in figure 6 below. 

1.     temp1 = pow(u, height); 

2.     temp2 = 1; 

3.   

4.     // Initialise asset prices at maturity 

5.     for(int i = 0; i < height; i++) { 

6.         St[i] = S * temp1 * temp2; 

7.   

8.         temp1 /= u; 

9.         temp2 *= d; 

10.     } 

Figure 6: Incorporating Power Calculations into the For Loop 
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Following synthesis, the for loop in figure 6 was scheduled with an initiation interval of 15, 

much higher than the target of 1. This was due to the floating-point division, which is 

computationally expensive. To fix this issue, before the loop, we calculate all values from a 

nd store them in an array. The array is then read in reverse order to calculate the value of St. 

This reduced the initiation interval to a value of 8, this can be improved further by removing 

the loop carried dependency inside the for loop. A downside to this implementation is that the 

BRAM usage increased from 48% to 70% as more values are stored on the FPGA itself. 

 

To further reduce the IPs resource usage, we approximate the value of the exp(a) functions 

with the following Taylor series [49]: 

 

𝑒𝑥 = 1 +  
𝑥

1!
+  

𝑥2

2!
+  

𝑥3

3!
+ ⋯ 

 

To remove the factorials, we can rewrite this series as the following [50]: 

 

𝑒𝑥 = 1 +  (
𝑥

1
) (1 +  (

𝑥

2
) (1 +  (

𝑥

3
) (… ))) 

 

During our tests, when calculating exp(a), the value of a was always less than 0.1. This meant 

that we only needed to consider the first expansion when approximating the value of exp(a). 

Therefore, the following Taylor expansion was implemented into our binomial trees 

algorithm: 

 

𝑒𝑥 = 1 +  (
𝑥

1
) 

 

This is an extremely simple calculation and significantly reduced the amount of work being 

done in comparison to the work being done when calling the exp(a) function in C. If the value 

of a was higher, we would need to expand the equation to further to increase the accuracy of 

our approximation. The final resource usage after following these optimisation steps are 

given in figure 7 below. 

 

  
Figure 7: Final Resource Usage for the European Binomial Tree Algorithm 
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5.3.2 Combined Binomial Tree 

The LUT had highest resource usage, at 1.9% utilisation, for both the European and 

American binomial tree IPs on the Alveo u200. Because of this, we were able to combine the 

code for both algorithms into a single IP. This IP contains two functions – eu_binomial_tree() 

and us_binomial_tree() – which are both called in the top level function of the HLS code. 

The dataflow pragma is also placed in the top-level function to allow these functions to be 

executed simultaneously. This means that the IP concurrently calculates the European and 

American value of an option before returning them both to the host. 

 

5.3.3 Monte Carlo – European Options 

To perform a Monte Carlo simulation, we are required to generate random numbers from a 

normal distribution [51]. In the first CPU implementation, we used the rand() function in C to 

generate random numbers from a uniform distribution. A Box-Muller transform was then 

applied to transform these numbers from a uniform distribution to a normal distribution [52]. 

When porting the program to run on an FPGA, we found that the rand() function wasn’t 

synthesisable in Vivado HLS. Because of this, a Mersenne-Twister algorithm was used to 

generate numbers from a uniform distribution instead of the rand() function [53]. 

 

Before developing the FPGA implementation, we analysed the runtime of each section of the 

Monte Carlo algorithm: initialisation, path generation, price calculation, standard error 

calculation. Path generation took the longest time, so we decided to concentrate on using the 

FPGA to accelerate this portion of the algorithm. We start by transferring the initial constants 

to the FPGA and then generate M paths with N steps per path. When pricing European 

options, we are only concerned about the price of the option at the final step of each path. 

Therefore, we only wrote this result back to the host. Figure 8 below shows how we used a 

burst-write as shown in [46] to more efficiently write data back to the host. 

 
1. DATA_TYPE burst_buffer[BURSTBUFFERSIZE]; 
2.   
3. // Simulate BURSTBUFFERSIZE paths and burst write to memory 
4. burst_buffer: for(int i = 0; i < M; i += BURSTBUFFERSIZE) { 

5.  int chunk_size = BURSTBUFFERSIZE; 
6.   
7.  if((i + BURSTBUFFERSIZE) > M) { 
8.   chunk_size = M - i; 

9.  } 

10.   
11.  // Generate M paths 
12.  generate_paths: for(int j = 0; j < chunk_size; j++) { 
13.   burst_buffer[j] = generate_path(&rand, S[0], deltaT, nudt, vdt, N); 

14.  } 
15.   
16.  // Burst write to memory 
17.  write_paths: for(int j = 0; j < chunk_size; j++) { 
18.   output_r[i + j] = burst_buffer[j]; 

19.  } 

20. } 

Figure 8: Burst-write to Memory 

 

In the above code, BURSTBUFFERSIZE is set to 256. So, we simulate 256 paths at a time 

and burst write the results to memory. This process is repeated until we have simulated a total 

of M paths.  
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6. Results and Discussion 

A spot price of 50, strike price of 50, time to maturity of 1 year, dividend yield of 0%, 

volatility of 25% and risk-free rate of 5% were used when collecting the results presented in 

this section. These values were chosen arbitrarily and do not represent a typical option.  

 

Throughout section 6.2, we will analyse the runtime of unoptimised and optimised CPU and 

FPGA implementations. The unoptimised CPU implementations were compiled with the -O0 

flag which turns off compiler optimisation. The optimised version was compiled with the -O3 

flag which optimises for code size and execution time but does not activate auto-

parallelisation. For the FPGA implementations, the unoptimised version had no HLS pragmas 

added to the code. The optimised version did have HLS pragmas added. When compiling for 

FPGA, enabling compiler optimisation significantly increases the compilation time; as such, 

we disabled it with the -O0 flag. Due to the time constraints of the project we were unable to 

analyse a parallel CPU implementation against an FPGA implementation. 

 

A list of supporting figures are supplied in appendix 6. 

 

6.1 Accuracy 

 Platform 

Algorithm CPU Zynq-7020 Alveo u200 

EU Binomial Tree 2.78541565 2.78521299 2.78521300 

US Binomial Tree 8.01245689 8.01226807 8.01227000 

EU Monte Carlo 2.76810241 2.76814928 2.76810290 
Table 2: Output of Algorithms on CPU, Zynq-7020 and Alveo u200 

 

The output of the CPU, Zynq-7020 and Alveo u200 implementations of the implemented 

algorithms are shown in table 2 above. Both binomial trees algorithms were run with a depth 

of 30,000 and the Monte Carlo algorithm had 1,000,000 paths with 100 steps per path. Both 

binomial trees algorithms are accurate to three decimal places on both FPGAs whereas the 

Monte Carlo algorithm is accurate to four. Due to the secretive nature of investment banking, 

we do not know what decimal place accuracy these firms aim for. However, stock screeners 

such as Yahoo! Finance display information to 4 decimal places. Based on this, the accuracy 

of our Monte Carlo algorithm is acceptable. The accuracy of the binomial trees algorithm 

would ideally be increased to 4 decimal places. 

 

As we are approximating the values of the exponential function in the FPGA implementation 

of our binomial tree algorithms; we expect the output of the CPU and FPGA implementations 

to differ slightly. This does not however explain the difference in output for the Monte Carlo 

algorithm, as we are not approximating any values in this algorithm. The slight differences 

between the Zynq-7020 and Alveo u200 are likely due to the loops being pipelined and 

unrolled differently on each device. 
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6.2 Time Performance of Implementations 

6.2.1 Binomial Tree 

 

Figure 9: Runtime of EU Binomial Tree for Cortex-A9 and Zynq-7020 

As we can see in figure 9 above, the unoptimised binomial trees algorithm ran slower on the 

Zynq-7020 than on the Cortex-A9. This is expected given that the clock speed of the Zynq-

7020 is slower than the clock speed of the Cortex-A9. After optimising the HLS code through 

the methods discussed in section 6, we were able to achieve a 7x speedup over the 

unoptimised CPU version. After enabling compiler optimisation on the CPU with the -O3 

compiler flag the speedup is reduced to 2x. 

  

Figure 10: Runtime of EU Binomial Tree for Intel Xeon E5649 and Alveo u200 
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In comparison to the Zynq-7020, the Alveo u200 unoptimised implementation runs faster 

than both the unoptimised and optimised Intel Xeon 5649 implementation. This is because 

the SDAccel compiler pipelined some of the for loops before the addition of HLS pragmas, as 

indicted by the compiler log. The optimised version achieved a speedup of 12x in comparison 

to the unoptimised CPU implementation. This speedup was reduced to 3x when compiling 

the CPU implementation with the -O3 flag. 

 

Similar research was carried out by [54] who compared the runtime of a European binomial 

tree algorithm on an Intel Xeon E5-1650 c3 and Alveo u200. They achieved a 70x speedup 

against a parallel CPU implementation using 12 threads. Despite the substantial speedup 

achieved in their paper, the binomial tree model used yields inaccurate results. Using the 

starting constants listed at the start of this chapter, and a depth of 1024, the output is 3.174 

where the closed form solution is 2.787. This level of inaccuracy would lead to substantial 

losses if the algorithm was employed by an investment bank. Whilst our implementation 

gives 3x (rather than 70x) speed-up it does give accurate results which would protect the 

finances of an investment bank. 

 

 
Figure 11: Runtime of US Binomial Tree on Cortex-A9 and Zynq-7020 

 

The CPU implementation of the US binomial tree algorithm took substantially longer to run 

on the Cortex-A9 than the European implementation. This is because the mathematics 

applied throughout the traversal stage of the algorithm differs between these two 

implementations. As with the European algorithm, the unoptimised implementation of the US 

algorithm also ran slower on the Zynq-7020 than both Cortex-A9 implementations. The 

optimised version of the code on the Zynq-7020 ran just as fast as the European algorithm. 

For the US binomial tree algorithm, a substantial speedup of 20x was achieved in comparison 

to the unoptimised CPU implementation. This speedup was reduced to 5x when compared to 

the optimised CPU implementation. 
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Figure 12: Runtime of US Binomial Tree on Intel Xeon E5469 and Alveo U200 

 

Unlike the Cortex-A9, the CPU implementation of the US binomial tree algorithm ran 4x 

faster than the European algorithm on the Intel E5649. A few reasons exist which could 

explain this difference. Firstly, the Intel chip may be better equipped to deal with the 

mathematical calculations applied during the traversal stage. A more compelling reason is 

that the Intel chip has higher amounts of cache memory, meaning that it must access global 

memory a fewer number of times. These hypotheses need to be analysed further, however 

that research is outside the scope of this project. Due to the decrease in runtime of the CPU 

implementation, we achieved a speedup of 3x against the unoptimised CPU implementation 

and 1.6x against the optimised CPU implementation. 

 

Both the European and US binomial trees algorithms are significantly bottlenecked by the 

power_calculation and loop_traversal for loops. Both for loops contain a loop carried 

dependency, and as such the compiler is unable to maintain an initiation interval of 1 which 

significantly increasing the latency of these loops. The only way to reduce the initiation 

interval is by removing the dependency from these for loops. 
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6.2.2 Combined European and US Binomial Tree 

 

Figure 13: Runtime of Binomial Trees Algorithms 

 

Figure 13 above shows the runtime of the European, US and combined binomial trees 

algorithms with a depth of 30,000. Figure 13 shows that the European and US 

implementations both ran concurrently, and at the same speed as running them individually, 

meaning that the total time to solve both algorithms is the time taken to solve the slowest 

algorithm. Whereas the time taken to execute both algorithms on the CPU is the time taken to 

run them one after another, as we have not optimised to reuse any data. This provides a 

significant speedup of 15x over the CPU implementation where both algorithms are executed 

sequentially. 

 

6.2.3 European Monte Carlo 

 

Figure 14: Monte Carlo Runtime on Cortex-A9 versus Zynq-7020 
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Figure 15: Monte Carlo Runtime on Intel Xeon E5649 versus Alveo u200 

 

As shown in figure 14, the unoptimised version of the Monte Carlo algorithm ran slightly 

faster on the Zynq-7020 than the Cortex-A9, achieving a speedup of 1.1x. Due to the high 

resource usage we were unable to optimise the algorithm further without running out of 

resources on the device. In contrast to this, figure 15 shows that the unoptimised Monte Carlo 

algorithm ran roughly 3x slower on the Alveo u200 than the Intel Cortex E5649. The 

algorithm slowed down further after following the optimisation steps stated in section 6.3. 

The HLS reports show that the latency of the generate_paths function increased significantly 

when optimising the code, which lead to the increased execution time. The current design 

could be further improved to run on an FPGA: currently, we have to wait for numbers to be 

generated and transformed during each iteration of the path_generation loop but this delay 

could be removed by utilising HLS streams [55]. By utilising HLS streams, we would better 

optimise the algorithm for dataflow. The use of HLS streams will be explored in further 

works. 

 

 Speedup 

Algorithm 
Zynq-7020 

(unoptimised) 

Zynq-7020 

(optimised) 

Alveo u200 

(unoptimised) 

Alveo u200 

(optimised) 

European 

Binomial Tree 
7x 2x 12x 3x 

US Binomial 

Tree 
20x 5x 3x 1.6x 

European 

Monte Carlo 
1.1x - 0.12x 0.09x 

Table 3: Summary of Timing Results 
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6.3 Energy Performance of Implementations 

6.2.1 Cortex-A9 versus Pynq-Z2 

 

Figure 16: Energy Use on Cortex-A9 versus Zynq-7020 

 

Two measurements were made: one when the board was idle, and another when the 

optimised version of each algorithm was executing. The difference between the two was then 

taken in order to calculate energy consuming by running the algorithm. Figure 16 shows that 

the Cortex-A9 tends to use less energy than the Zynq-7020. The US binomial trees algorithm 

saw a significant speedup when implemented on the Zynq-7020 which is why the results are 

opposite for this algorithm. As we were measuring the energy use of the whole board, and not 

specific components, these results do not provide a true insight into the energy use of the 

Cortex-A9 and Zynq-7020. We were working in a Jupyter notebook environment whilst 

working with the Zynq-7020 so the CPU would have been in use at the same time as the 

FPGA. This would explain why we are seeing higher energy use for the Zynq-7020 when we 

hypothesised that it would be lower. 

 

6.2.2 Intel Xeon E5649 versus Alveo u200 

The Intel Xeon E5649 is an old CPU and lacks the performance counters required to measure 

its power consumption. As mentioned in section 4.3, the TDP was used instead. The TDP of 

the Intel CPU is 80W and is defined as “the average power, in watts, the processor dissipates 

when operating at base frequency with all cores active under an Intel defined, high-

complexity workload” [56]. As the CPU has 6 cores, we will assume that the minimum 

power that the CPU would use is a sixth of this value.  

 

 Energy Use (J) 

Algorithm Intel Min (13W) Intel Max (80W) Alveo 

EU BT 66.77 410.89 419.49 

US BT 32.24 198.40 322.64 

EU MC 262.24 1613.76 8294.26 

Combined 95.29 586.39 482.47 

Table 4: Energy Use of Intel Xeon E5649 versus Alveo u200 
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As in the previous section, these results show that the CPU implementation tends to use less 

energy than the FPGA implementation. The script used to measure power use on the Alveo 

also measures idle usage for 5 seconds before and after running the kernel, so actual energy 

use would be lower. Furthermore, the estimation of energy use for the Intel fails to account 

for the energy use of memory, which is included in the Alveo measurements. As the Monte 

Carlo script is slower on the FPGA, we expect the energy use to be higher than the CPU 

implementation. It would be interesting to revisit this analysis in the future when we have 

access to more reliable tools to measure the energy use of both the Intel processor and Alveo 

u200. 

 

6.4 Floating Point versus Fixed Point 

The algorithms implemented thus far have all used floating-point data types. Most algorithms 

do not need the level of accuracy provided by a floating-point design and would perform 

equally as well with a fixed-point design. 

 

Moving from a floating-point to fixed-point design can benefit developers in several ways. 

First and foremost, the developer should see a significant reduction in the utilisation of FPGA 

resources. This is because fewer DSP blocks, look-up tables and flip-flops are needed when 

working with fixed-point data types. This reduction in FPGA resources should also lead to a 

reduction in power consumption. Furthermore, the developer should also see latency 

improvements as the number of resources are reduced. 

 

Xilinx offer a header file, named ap_fixed.h, which allows us to convert our IP to a fixed-

point design. We can define a fixed-point type by typing ap_fixed<W, I> where W is the 

total number of bits required and I is the number of bits for the integer part; any remaining 

bits are used for the decimal part. For example, ap_fixed<10, 5> would create a fixed-point 

type with 5 integer bits and 5 decimal bits. Due to the power calculations in this algorithm, 

the maximum depth of the tree was limited to 5,000. If the depth was set at 30,000, we would 

require 56 bits to represent just the integer part of our number and would see little benefit 

from converting to a fixed-point design. 

 

To determine the number of bits required for the integer part, we calculated the value of 

log2 𝑛 where n is the range of numbers we wish to represent. The smallest number we need to 

represent is 0 and the largest is just under 75 million. Therefore, we require log2(75𝑚𝑖𝑙𝑙𝑖𝑜𝑛) 

or 26 bits to represent the integer part of our number. To be within 0.5 of the output from the 

floating-point implementation, we require 7 decimal places of accuracy. This meant that we 

needed log2(107) or 23 bits to represent the decimal part of our number. The final definition 

of the fixed-point type was therefore ap_fixed<49, 26>. 
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Figure 17: Fixed-Type Resource Usage 

 

The resource usage of all components dropped after switching to a fixed-point design, 

however the change wasn’t that significant. This is because of the high number of bits 

required to represent the values required for our algorithm.  

 

Type Depth Output 

Floating Point 1000 2.78835110 

Floating Point 5000 2.78508570 

Fixed Point 1000 2.78941320 

Fixed Point 5000 3.04024650 

Table 5: Floating-Point and Fixed-Point Output 

With a depth of 1,000 the output from the fixed-point design was accurate to two decimal 

places. The differences in these answers is due to the lower precision for the fixed-point 

design. Overflow and rounding are also handled differently in the fixed-point design which 

could also lead to different answers. With a depth of 5,000 the answer is much more 

inaccurate. This suggests that we need higher decimal place accuracy for trees of this size. 

 

Type Depth Average Min Max Speedup 

Floating Point 1000 0.0022755 0.002185 0.002356 - 

Floating Point 5000 0.0426866 0.042637 0.042729 - 

Fixed Point 1000 0.0022027 0.002147 0.002254 1.033077 

Fixed Point 5000 0.0424855 0.042477 0.042495 1.004733 

Table 6: Time Taken for Floating-Point and Fixed-Point 

As we can see from table 6 above, we yield a slight performance increase when moving to a 

fixed-point design. An energy saving of 15% was observed as the energy usage fell from 

335J in the floating-point design down to 284-Joules in the fixed-point design. To improve 

these numbers, we would have to reduce the resource usage even further. 

 

The energy and timing values could be improved by further reducing the resource usage on 

the device. Such a large range isn’t required by all variables in the binomial trees algorithm. 

We could therefore reduce the number used for these variables, which would reduce the 

resource utilisation on the device.  
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6.5 Comparison of Algorithms 

The closed form solution to the Black-Scholes model using the values mentioned at the start 

of this section is 2.78676301. The output of our binomial trees algorithm for varying depth, 

and Monte Carlo algorithm for varying height, are given in table 7 and 8 respectively. The 

number of steps in the Monte Carlo algorithm was fixed at 100. 

  

EU Binomial Tree 

Depth CPU Pynq-Z2 Alveo 

1000 2.78714871 2.78835106 2.78835110 

5000 2.78578687 2.78508568 2.78508570 

10000 2.78542614 2.78532600 2.78532600 

15000 2.78543425 2.78546715 2.78546710 

20000 2.78374958 2.78534555 2.78534560 

25000 2.77286482 2.77295160 2.77295160 

30000 2.78541565 2.78521299 2.78521300 

Table 7: Output of Binomial Tree Algorithm with Varying Depth 

 

EU Monte Carlo 

# Paths CPU Pynq-Z2 Alveo 

100 2.47350740 2.47350873 2.47350840 

1000 2.95371366 2.95371251 2.95371220 

10000 2.76025653 2.76025878 2.76025580 

100000 2.76002216 2.76002427 2.76002430 

1000000 2.76810241 2.76814928 2.76810290 

Table 8: Output of Monte Carlo Algorithm with Varying Number of Paths 

 

As we can see from table 7 above, the binomial trees algorithm provides a solution that is 

much closer to the closed form solution than the Monte Carlo algorithm. Moreover, the 

binomial trees algorithm can give a close approximation with a depth of just 1,000 whereas 

the Monte Carlo algorithm requires at least 10,000 paths before it can give a reasonable 

approximation. From this, and the analysis carried out in sections 7.2 and 7.3, we see the 

binomial trees algorithm can provide a much better approximation, in shorter amount of time 

and with lower energy use. This supports the findings by [1] who stated that the Monte Carlo 

algorithm should only be used as a last resort.   
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7. Evaluation 

Since redefining the scope of the project, as discussed in section 5.5, the project has 

progressed at a reasonable pace, despite hitting several roadblocks along the way. The first 

roadblock was figuring out how to generate random numbers on the FPGA after discovering 

that the rand() function in C is not synthesisable when placed in HLS code. After some 

research, we found that the Mersenne-Twister algorithm combined with the Box-Muller 

transform algorithm was widely used within finance research. The Box-Muller transform 

generates pairs of normally distributed numbers, which aren’t required when pricing under 

Black-Scholes conditions; however, they are required when pricing under Heston conditions. 

Another stumbling block came when the binomial trees algorithms used too many resources 

and would not fit on the Zynq-7020 FPGA. The implementation of the Taylor expansion, as 

well as integrating power calculations into the for loop, minimised the resource usage and 

allowed our design to fit on the Zynq-7020. 

 

We have seen good speedup results for both binomial trees algorithms on both the Zynq-7020 

and Alveo u200. These results were further improved when combining the European and 

American binomial trees algorithms into one IP and running them concurrently. 

Unfortunately, our current implementation of the Monte Carlo algorithm on the Alveo u200 

is slower than the CPU implementation. This is slightly disappointing as we hoped all FPGA 

implementations would be faster than their respective CPU implementations at this stage of 

the project. It was also disappointing that we were unable to make a detailed evaluation into 

the energy use on an FPGA in comparison to a CPU. The analysis for the fixed-point design 

was also limited due to the high number of bits required to represent the range of numbers in 

the algorithm. Despite this, we did see a slight increase in speed and energy efficiency when 

moving to a fixed-point design. 

 

In general, CPUs perform well whilst using both the exp(x) and pow(a, b) functions. 

However, to get good performance on FPGAs we had to use approximations such as the 

Taylor series for calculating the value of exp(x). This makes FPGAs perform well for specific 

situations, such as when x is less than 0.1 as mentioned in section 5.3.1. However, for larger 

values we must add an extra expansion term to maintain the same accuracy when 

approximating the value of exp(x). This shows the importance of the device being 

reconfigurable so we can load bitstreams that are optimised for the input data.  
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8. Learning Points 

Developing software to run on an FPGA is something that I have never explored before. As 

such, the project had a steep learning curve and allowed me to gain a lot of new skills and 

knowledge. First and foremost, I learnt how to develop algorithms that take advantage of 

FPGA architecture. I also learnt how to write HLS code, and use the relevant software, 

specifically Vivado Design Suite and SDAccel, that allow us to interface with FPGAs. I also 

gained an appreciation of how to use OpenCL to interact with a device from a host. Finally, I 

learnt about generating pseudorandom numbers and mathematical approximations such as the 

Taylor expansion. 

 

Redefining the project scope towards the beginning of the project was crucial to its overall 

success. Without narrowing the scope, I would not have been able to meet all the aims I set 

out to achieve. The implementation of the Taylor expansion and integration of power 

calculations into the for loops were also crucial to the success of this project. Without them, 

the Zynq-7020 implementations would not have run faster than the Cortex-A9 whether the 

HLS code was optimised or not. 

 

Having to redefine the scope of the project at the beginning was a significant drawback for 

this project. This stressed the importance of ensuring that the scope of a project is suitable for 

the time available; something which we will aid us when scoping projects in the future  
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9. Professional Issues 

9.1 Professional Competence and Integrity 

At the beginning of the project, it was necessary to review previous literature relating to 

FPGAs and options pricing in finance. This review revealed the knowledge and skills 

required for this project. As such, I was able to develop my knowledge and skills such that I 

did not claim a level of competence that I did not possess. 

 

9.2 Duty to Relevant Authority 

A user manual has been included in the Github repository as well as the data collected 

throughout the experiments [36]. This ensures that no data are misrepresented or withheld. As 

we are not dealing with any confidential information, there were no concerns regarding how 

the results are disclosed. 

 

9.3 Duty to the Profession 

It is important to encourage and support our peers in their professional development. To do 

this, the code developed throughout this project along with the results are available in a 

public Github repository. A copy of this thesis will also be uploaded following the marking 

process. This repository will stay live following the project. 

 

9.4 Ethical use of Data 

No data was required to conduct the research throughout this project. Before conducting the 

research, arbitrary values were selected for the initial stock price, strike price, dividend yield, 

risk-free rate, volatility and time to maturity. Whilst conducting the experiments data relating 

to the run time, energy usage and accuracy of the algorithms were collected. These data were 

then analysed to test our hypothesis. If all the results are reported accurately, there will be no 

concerns regarding the ethical use of data.  
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10. Conclusions 

10.1 Summary 

Based on the work done throughout this thesis, we can at least partially reject the first null 

hypothesis (presented in section 3.1.1); that all FPGA implementations of the algorithms 

covered will be slower than the respective CPU implementations. The Monte Carlo algorithm 

needs to be optimised further to fully reject the null hypothesis. Due to the lack of reliable 

energy measurements, we were unable to reject the second null hypothesis (presented in 

section 3.1.2) that the FPGA implementations will be more energy efficient than the CPU 

implementations. 

 

The algorithms that were built during this project demonstrate how FPGAs can be used to 

accelerate options pricing libraries, whilst maintaining a similar accuracy to the CPU 

implementations. A summary of the timings results is presented in table 3 at the end of 

section 6.2. We also demonstrate how a fixed-point design can be employed to reduce the 

resource usage of an FPGA and in turn reduce the energy consumption. 

 

10.2 Future Work 

Given the limited timeframe of this project, it was not possible to gain a full appreciation of 

the techniques used when designing algorithms for FPGAs. Therefore, it would be useful to 

revisit this work after gaining more knowledge on how to optimise designs for FPGAs and 

apply this knowledge to the algorithms covered throughout this project. In addition, it would 

be useful to revisit the energy use analysis when we have access to more profiling tools for 

recording power consumption. It would also be useful to use a more modern CPU. 

 

Not all variables in the binomial tree algorithm have a large range of values. This means we 

could assign a lower number of bits to store these values, thus reducing the resource usage 

and providing a performance increase. We could also analyse the performance of these 

algorithms in a multithreaded or multiprocessor environment as well as on other accelerators 

such as GPUs. Lastly, the research can be expanded in order to satisfy all desirable aims.  
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12. Appendix 1 – Equations 

12.1 Black Scholes Formula 

This formula was taken from [18]. 

 

𝐶0 = 𝑆0𝑒−𝛿𝑇𝑁(𝑑1) − 𝑋𝑒−𝑟𝑇𝑁(𝑑2) 

 

Where 

 

𝑑1 =

(ln (
𝑆0

𝑋
) + (𝑟 − 𝛿 +

𝜎2

2
) 𝑇)

𝜎√𝑇 
 

 

𝑑2 = 𝑑1 −  𝜎√𝑇 

 

And where 

𝐶0 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑎𝑙𝑙 𝑜𝑝𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 

𝑆0 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑜𝑐𝑘 𝑝𝑟𝑖𝑐𝑒 
𝑁(𝑑) = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑎 𝑑𝑟𝑎𝑤 𝑓𝑟𝑜𝑚 𝑎 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑡𝑖𝑜𝑛 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑑 
𝑋 = 𝐸𝑥𝑒𝑟𝑐𝑖𝑠𝑒 𝑝𝑟𝑖𝑐𝑒 
𝛿 = 𝐴𝑛𝑛𝑢𝑎𝑙 𝑑𝑖𝑣𝑖𝑑𝑒𝑛 𝑦𝑖𝑒𝑙𝑑 𝑜𝑓 𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔 𝑠𝑡𝑜𝑐𝑘 
𝑟 = 𝑅𝑖𝑠𝑘 − 𝑓𝑟𝑒𝑒 𝑟𝑎𝑡𝑒 
𝑇 = 𝑇𝑖𝑚𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑢𝑛𝑡𝑖𝑙 𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 (𝑖𝑛 𝑦𝑒𝑎𝑟𝑠) 
𝜎 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑛𝑛𝑢𝑎𝑙𝑖𝑠𝑒𝑑 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠𝑙𝑦 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑒𝑑 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑡𝑢𝑟𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑜𝑐𝑘 

 

12.2 Heston Formula 

This formula was taken from [19]. 

 

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + √𝑉𝑡𝑆𝑡𝑑𝑊1𝑡 

𝑑𝑉𝑡 = 𝑘(𝜃 − 𝑉𝑡)𝑑𝑡 + 𝜎√𝑉𝑡𝑑𝑊2𝑡 

 

Where 

𝑆𝑡 = 𝑡ℎ𝑒 𝑎𝑠𝑠𝑒𝑡 𝑝𝑟𝑖𝑐𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 
𝑟 = 𝑟𝑖𝑠𝑘 𝑓𝑟𝑒𝑒 𝑟𝑎𝑡𝑒 

√𝑉𝑡 = 𝑉𝑜𝑙𝑎𝑖𝑙𝑖𝑡𝑦 (𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛)𝑜𝑓 𝑡ℎ𝑒 𝑎𝑠𝑠𝑒𝑡 𝑝𝑟𝑖𝑐𝑒 

𝜎 = 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 √𝑉𝑡 

𝜃 = 𝑙𝑜𝑛𝑔 − 𝑡𝑒𝑟𝑚 𝑝𝑟𝑖𝑐𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 
𝑘 = 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑡𝑜 𝑡ℎ𝑒 𝑙𝑜𝑛𝑔 − 𝑡𝑒𝑟𝑚 𝑝𝑟𝑖𝑐𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 
𝑑𝑡 = 𝑖𝑛𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑠𝑚𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 

𝑊1𝑡 = 𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 𝑚𝑜𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑠𝑠𝑒𝑡 𝑝𝑟𝑖𝑐𝑒 

𝑊2𝑡 = 𝐵𝑟𝑜𝑤𝑛𝑖𝑎𝑛 𝑚𝑜𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑠𝑠𝑒𝑡′𝑠 𝑝𝑟𝑖𝑐𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 
𝑝 = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑊1𝑡𝑎𝑛𝑑 𝑊2𝑡   
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13. Appendix 2 - Pseudocode 

13.1 Monte Carlo Black-Scholes  

This is the pseudocode for Monte Carlo simulation of the Black-Scholes model for a European Call 

Option, taken from [50]. 

 

initialise_parameter{K, T, S, sig, r, div, N, M} 

 

# Compute constants 

dt = T/N 

nudt = (r – div – 0.5 * sig^2)dt 

sigdt = sig * sqrt(dt) 

 

sum_CT = 0 

sum_CT2 = 0 

 

for i  = 0 to N do {for each simulation} 

 St = S 

next i  

 

for j = 1 to M do {for each simulation} 

  

 for i = 1 to N do {for each time step} 

  ε = standard_normal_sample 

  St = St * exp(nudt + sigdt * ε) {evolve the stock price} 

 next i 

  

 ST = exp(lnSt) 

 CT = max(0, ST – K) 

 sum_CT = sum_CT + CT 

 sum_CT2 = sum_CT2 + CT * CT 

 
next j 

 

call_value = sum_CT / M * exp(-rT) 

SD = sqrt((sum_CT2 – sum_CT * sum_CT / M) * exp(-2rT) / (M – 1)) 

SE = SD / sqrt(M)  
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13.2 Tree-Based Solver Pseudocode 

This is the pseudocode for pricing a European call option using a tree-based solver, taken from [56]. 

 

initialise_parameter{K, T, S, sig, r, div, height} 

 

# Compute constants 

dt = T / height 

u = exp(((r – div) * dt) + (v * sqrt(dt))) 

d = exp(((r – div) * dt) - (v * sqrt(dt))) 

pu = (exp((r – div) * dt) – d) / (u – d) 

pd = 1 – pu 

disc = exp(-r * dt) 

 

# Initialise asset prices at maturity 

for i = 0 to height 

 St[i] = S * pow(u, height-i) * pow(d, i) 

next i 

 

# Initialise option values at maturity 

for i = 0 to height 

 C[i] = max(K – St[i], 0) 

next i 

 

# Traverse tree 

for i = height-1 to 0 

 for j = 0 to i 

  C[j] = (dpu * C[j]) + (dpd * C[j+1]) 

 next j 

next i 

 

When pricing American options, the traversal loop becomes 

# Traverse tree 

for i = height-1 to 0 

 for j = 0 to i 

  C[j] = (dpu * C[j]) + (dpd * C[j+1]) 

  St[j] = St[j] / u 

  C[j] = max(C[j], max(St[j] – K, 0)) 

 next j 

next i 
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14. Appendix 3 – Original Project Design 

14.1 Project Management 

We will implement version control to maintain a backup of all code written and ensure that 

new parts of the system integrate seamlessly into the old system. A Github repository has 

been setup for this purpose. In addition, the contents of the PYNQ-Z2 board will be regularly 

backed up to Google Drive. Similarly, we will also backup all assignments and other 

documents to Google Drive. 

 We have decided to use Trello in order to manage the project workload. The tasks will 

be divided into four categories: to be completed, completed, in progress and on hold. This 

will allow us to manage these tasks and ensure that the project proceeds at an acceptable rate. 

 

14.2 Experimental Design 

This project begins by implementing a proof of concept on the PYNQ-Z2 development board. 

During this stage, we will implement a Monte Carlo algorithm to approximate the solutions 

to the Black-Scholes and Heston option pricing models. The Monte Carlo simulations 

performed at this stage will be small using only 100 paths. 

 Following this, we aim to scale our simulations and run them on the Alveo FPGA. In 

this case, we will run Monte Carlo simulations that have 2,500 paths or greater. As we move 

from the PYNQ-Z2 board to the Alveo FPGA, unit tests will be applied to ensure that the 

algorithms still work correctly. When performing these tests, we will use fixed starting 

parameters and number of simulated paths to ensure fair comparison. The answers from the 

Alveo FPGA implementation will then be compared to the PYNQ-Z2 implementation. As we 

are running Monte Carlo simulations, no two runs will yield the same answer; however, the 

variance of these answers should be minimal. 

 When conducting our experiments, we will run our algorithm multiple times with the 

same starting parameters. The exact number of times we run the algorithm will depend on its 

runtime. This is because, in the case of the Nimbix platform, we want to ensure that we 

account for outliers, but we don’t want to run out of compute time. We will then take the 

average of the results over all runs to account for anomalous results.  

 

14.3 Experiments to be Performed 

We will perform a number of experiments to determine the run time, accuracy and energy use 

of the mentioned algorithms. We will measure the total run time of our algorithms, as well as 

measuring times relating to data transfers and kernel runtimes. These measurements will be 

taken by using Pythons time function and C/C++ time function whilst working on the PYNQ 

board. Similarly, when working on the Nimbix cloud or Barkla, these measurements will be 

taken by using C/C++ time function and the OpenCL profiling functions. 

 When approximating the price of European options, we can determine the accuracy of 

our solution by comparing it directly with the closed-form solutions. This is not possible for 

American options as there is no closed-form solution. In this case, we will calculate the 

estimated standard error to determine the accuracy of our Monte Carlo solution. This is done 

by dividing the sample standard deviation by the square root of the number of paths.  

 We will use a USB tester such as to measure the energy usage of our PYNQ board. 

This will tell us the energy use of the whole board, rather than just the FPGA, but should 
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provide some insight into the efficiency of a hybrid CPU-FPGA implementation. On the 

Nimbix cloud or Barkla, we will use API queries to determine the energy usage. The specific 

API queries are still to be determined. 

 

14.4 Analysis of Results 

In the first stage of analysis, we will compare CPU implementations of options pricing 

algorithms against hybrid CPU-FPGA implementations of the same algorithms. We will 

analyse the run time and accuracy of these algorithms on both implementations as well as the 

energy used to run them. This analysis will allow us to either accept or reject the null 

hypothesis presented in section 4.1.1. Furthermore, by performing this analysis, we will 

satisfy the first primary aim of this project. 

 Following this, we will compare the hybrid CPU-FPGA implementations against each 

other. The purpose of this comparison is to help inform investors about which algorithm is 

best to implement. Throughout this analysis, we will consider the quality of solution from 

each algorithm, how quickly the algorithm executes and how much energy is used during 

execution. 

 Finally, we will compare the performance of these algorithms when using floating-

point and fixed-point numbers. We will then analyse the trade-off between speed-up, 

accuracy and energy efficiency when using either floating or fixed-point numbers. 

 

14.5 FPGA Options Pricing Library 

The options library will provide users with access to the algorithms developed throughout 

this project. The host code will be written in C++, so we can follow an object-oriented 

design. In addition, we will use OpenCL to allow communication between the host and the 

device. Figure 1 below outlines the architecture for this system. 

 

 

 

Figure 1: System Architecture 

 

After launching the library, the user will be prompted by the ‘program manager’ to specify 

the algorithm they wish to use, and what type of option they wish to price. Following this, 

they will be prompted to enter the required parameters for the chosen algorithm. These 

parameters will be calculated from a historical dataset should one be provided. If one is not 

provided, the user must enter the parameters. Following this, the chosen algorithm will run. If 

enabled, both a CPU and hybrid CPU-FPGA implementation will run, otherwise just the 

hybrid implementation will run. Once the algorithm has finished running, the results of the 

run will be output to the console. 



 

39 

 

15. Appendix 4 - Trello Board 
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16. Appendix 5 – Zynq-7020 and Alveo u200 Design Flow 

16.1 Zynq-7020 

The Zynq-7020 FPGA used throughout this project was installed in a Pynq-Z2 board. Pynq is 

an open source project, developed by Xilinx, that provides the productivity benefits of Python 

to embedded systems designers. The designer first develops an IP in Vivado HLS, imports it 

into a block design in Vivado Design Suite and interacts with the generated bitstream file 

through a Jupyter notebook [42]. 

 

When designing an IP in Vivado HLS, we start by defining a top-level function, which is 

equivalent to the main() function in C. Following this, we must write a number of interface 

pragmas, which provide our IP with access to global memory. An example of this is shown 

below in Figure 1.   

 

 

Figure 1: Defining Interface Pragmas in Vivado HLS 

 

In this case, we have both m_axi and s_axilite ports. The m_axi ports are used for data input 

and output, whereas the s_axilite ports are used for configuring the IP at runtime [42]. With 

the top-level function and memory interfaces defined, we can write the rest of our algorithm 

as a normal C/C++ program. After writing our algorithm, the final stages are to synthesise 

our code and then export it as RTL. The synthesis stage ensures the correctness of our C/C++ 

program. When exporting the program as RTL, our C/C++ code gets converted into an HDL 

such as Verilog. 

 

After exporting our design as RTL, we are ready to import the IP into the Vivado Design 

Suite. An example of an imported IP is shown in figure 1below, where we can see the m_axi 

and s_axilite ports which were defined in our HLS code. This IP is then integrated into a 

block design, shown in figure 2, which describes how the different components on the Pynq-

Z2 board interact with each other and is used when generating a bitstream. 
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Figure 1: Binomial Tree IP in Vivado Design Suite 

 

 

Figure 2: Binomial Tree Block Design in Vivado Design Suite 

 

The final block designs for all algorithms implemented on the Zynq-7020 are similar in 

appearance to figure 2. In the above design, two AXI interconnects are used to allow our IP 

to communicate with the master and slave ports on the ZYNQ7 Processing System IP. The 

constant IPs that can be seen in the design are used to enforce cache coherency at a hardware 

level on the Zynq programmable logic [43]. Once the block design is complete, we generate a 

bitstream file which is then used to program the FPGA at runtime. 

 

Once the block design is complete, we generate a bitstream file which is then used to 

program the FPGA at runtime. Now that the bitstream has been generated we are ready to 

work in the Pynq development environment. This requires a driver class for our IP, shown in 

figure 3 below, that defines read and write functions to interact with the register addresses 

found in the header file after synthesis. 
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Figure 3: Binomial Tree Driver Class 

 

 

Figure 4: Running Algorithm on Zynq-7020 

 

After using these functions to transfer data to the FPGA, we are ready to run our IP as shown 

in figure 4. We first check that the status register is set to ap_idle, if this is the case, we can 

set the register to ap_start which tells the IP to run. We then enter a while loop that polls the 

status register to determine when the algorithm has finished running. Once finished, we can 

read the output register and print the result to the client. 

 

16.2 Alveo u200 

When porting our algorithms to run on the Alveo u200, we were able to reuse the HLS code 

developed in section 6.1. The only thing that changed was how we interacted with the device 

from our host. In this case, OpenCL was used to allow the host to communicate with the 

device. The host files used were based upon Xilin’s SDAccel Examples Github repository 

[44]. 
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First, we create an SDAccel Application Project which the HLS files and host code are 

imported into. Following this, we have to add a binary container to the project and define the 

top-level function as shown in figure 5 below. 

 

 

Figure 5: Binary Container and Top-level Hardware Function in SDAccel 

 

We are now ready to build our project. The SDAccel environment provides three build 

modes: software emulation, hardware emulation and hardware. Software emulation allows 

users to verify the correctness of their code whereas hardware emulation allows users to 

verify that their design is fit for hardware. These tools allow users to quickly develop and 

verify their designs. After running and verifying the software and hardware emulation, we are 

ready to build our design for hardware. This is a lengthy process that tends to take two hours 

or more. After compilation the design can be ran on the FPGA from the SDAccel 

environment or command line.  
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17 Appendix 6 – Supporting Figures 

17.1 European Binomial Tree 

 

 

 

  

Platform # of Options Depth 1 2 3 4 5 Average Min Max Unoptimised Optimised

Cortex-A9 - Unoptmised 1 5000 0.86577 0.86536 0.86550 0.86559 0.86551 0.86554 0.86536 0.86577 - -

Cortex-A9 - Unoptmised 1 10000 3.45882 3.43635 3.45593 3.45835 3.41056 3.44400 3.41056 3.45882 - -

Cortex-A9 - Unoptmised 1 15000 7.69119 7.70050 7.69971 7.69650 7.69909 7.69740 7.69119 7.70050 - -

Cortex-A9 - Unoptmised 1 20000 13.59668 13.59142 13.51107 13.55888 13.55763 13.56313 13.51107 13.59668 - -

Cortex-A9 - Unoptmised 1 25000 20.98550 21.09110 21.05971 21.05091 21.05874 21.04919 20.98550 21.09110 - -

Cortex-A9 - Unoptmised 1 30000 30.20419 30.17912 30.19275 30.24043 30.20333 30.20396 30.17912 30.24043 - -

Cortex-A9 - Optimised 1 5000 0.21916 0.21920 0.21911 0.21916 0.21921 0.21917 0.21911 0.21921 - -

Cortex-A9 - Optimised 1 10000 0.90563 0.90082 0.88586 0.90561 0.88142 0.89587 0.88142 0.90563 - -

Cortex-A9 - Optimised 1 15000 2.13841 2.13336 2.13214 2.13318 2.13135 2.13369 2.13135 2.13841 - -

Cortex-A9 - Optimised 1 20000 4.03617 4.00152 3.99445 4.00744 3.99995 4.00790 3.99445 4.03617 - -

Cortex-A9 - Optimised 1 25000 6.44649 6.44253 6.42342 6.47566 6.42562 6.44274 6.42342 6.47566 - -

Cortex-A9 - Optimised 1 30000 9.43090 9.44510 9.42491 9.41304 9.43111 9.42901 9.41304 9.44510 - -

Zynq Z7020 - Unoptimised 1 5000 1.50351 1.50351 1.50352 1.50345 1.50359 1.50352 1.50345 1.50359 0.575679976 0.145789369

Zynq Z7020 - Unoptimised 1 10000 6.00553 6.00587 6.00562 6.00556 6.00553 6.00562 6.00553 6.00587 0.573462799 0.146768062

Zynq Z7020 - Unoptimised 1 15000 13.50739 13.50744 13.50742 13.50767 13.50764 13.50751 13.50739 13.50767 0.569860447 0.15778854

Zynq Z7020 - Unoptimised 1 20000 24.00951 24.00945 24.00949 24.00943 24.00941 24.00946 24.00941 24.00951 0.564907945 0.166599089

Zynq Z7020 - Unoptimised 1 25000 37.51151 37.51134 37.51138 37.51127 37.51134 37.51137 37.51127 37.51151 0.561141649 0.171297973

Zynq Z7020 - Unoptimised 1 30000 54.01423 54.01406 54.01380 54.01357 54.01354 54.01384 54.01354 54.01423 0.559189322 0.174606327

Zynq Z7020 - Optimised 1 5000 0.12615 0.12617 0.12613 0.12612 0.12612 0.12614 0.12612 0.12617 6.861939003 1.737542513

Zynq Z7020 - Optimised 1 10000 0.50206 0.50205 0.50206 0.50206 0.50206 0.50206 0.50205 0.50206 6.859759741 1.784388031

Zynq Z7020 - Optimised 1 15000 1.12801 1.12797 1.12797 1.12796 1.12797 1.12798 1.12796 1.12801 6.82406383 1.891603598

Zynq Z7020 - Optimised 1 20000 2.00390 2.00391 2.00391 2.00390 2.00392 2.00391 2.00390 2.00392 6.768342413 2.000044214

Zynq Z7020 - Optimised 1 25000 3.12982 3.12982 3.12984 3.12982 3.12983 3.12983 3.12982 3.12984 6.725355815 2.058498403

Zynq Z7020 - Optimised 1 30000 4.50576 4.50575 4.50576 4.50576 4.50575 4.50575 4.50575 4.50576 6.703419147 2.092659592

SpeedupTime Taken (s)

Zynq-7020 vs Cortex A9 (1 option, varying depth)

Platform # of Options Depth 1 2 3 4 5 Average Min Max Unoptimised Optimised

Intel Xeon E5649 - Unoptimised 1 5000 0.45785 0.47561 0.47625 0.47908 0.47830 0.47342 0.45785 0.47908 - -

Intel Xeon E5649 - Unoptimised 1 10000 2.10237 2.09911 2.13623 2.10161 2.10728 2.10932 2.09911 2.13623 - -

Intel Xeon E5649 - Unoptimised 1 15000 4.98641 4.60739 4.60381 4.60465 4.60351 4.68115 4.60351 4.98641 - -

Intel Xeon E5649 - Unoptimised 1 20000 8.23715 8.23070 8.23159 8.22647 8.23239 8.23166 8.22647 8.23715 - -

Intel Xeon E5649 - Unoptimised 1 25000 12.96190 12.99067 13.32074 13.40638 3.60544 11.25702 3.60544 13.40638 - -

Intel Xeon E5649 - Unoptimised 1 30000 19.22006 18.89323 18.90218 18.89998 19.11759 19.00661 18.89323 19.22006 - -

Intel Xeon E5649 - Optimised 1 5000 0.14412 0.14561 0.14910 0.14947 0.14616 0.14689 0.14412 0.14947 - -

Intel Xeon E5649 - Optimised 1 10000 0.56578 0.56566 0.56175 0.56744 0.56504 0.56513 0.56175 0.56744 - -

Intel Xeon E5649 - Optimised 1 15000 1.28321 1.31524 1.31524 1.28854 1.28204 1.29685 1.28204 1.31524 - -

Intel Xeon E5649 - Optimised 1 20000 2.37080 2.37347 2.36926 2.36819 2.36555 2.36946 2.36555 2.37347 - -

Intel Xeon E5649 - Optimised 1 25000 3.60544 3.60434 3.59596 3.60404 3.60511 3.60298 3.59596 3.60544 - -

Intel Xeon E5649 - Optimised 1 30000 5.13804 5.13518 5.13684 5.13448 5.13593 5.13609 5.13448 5.13804 - -

Alveo u200 - Unoptimised 1 5000 0.08474 0.08469 0.08473 0.08468 0.08471 0.08471 0.08468 0.08474 5.588716832 1.734065604

Alveo u200 - Unoptimised 1 10000 0.33559 0.33557 0.33555 0.33556 0.33567 0.33559 0.33555 0.33567 6.285462828 1.684014834

Alveo u200 - Unoptimised 1 15000 0.75320 0.75309 0.75307 0.75314 0.75313 0.75313 0.75307 0.75320 6.215629796 1.721958199

Alveo u200 - Unoptimised 1 20000 1.33729 1.33733 1.33731 1.33729 1.33729 1.33730 1.33729 1.33733 6.155425044 1.771818405

Alveo u200 - Unoptimised 1 25000 2.08821 2.08810 2.08816 2.08821 2.08812 2.08816 2.08810 2.08821 5.390883141 1.725431234

Alveo u200 - Unoptimised 1 30000 3.00565 3.00565 3.00559 3.00557 3.00567 3.00563 3.00557 3.00567 6.323677351 1.708826374

Alveo u200 - Optimised 1 5000 0.04273 0.04268 0.04264 0.04273 0.04266 0.04269 0.04264 0.04273 11.09057917 3.441182019

Alveo u200 - Optimised 1 10000 0.16823 0.16824 0.16822 0.16832 0.16824 0.16825 0.16822 0.16832 12.53690594 3.358915031

Alveo u200 - Optimised 1 15000 0.37703 0.37705 0.37712 0.37711 0.37711 0.37708 0.37703 0.37712 12.41407084 3.43915448

Alveo u200 - Optimised 1 20000 0.66925 0.66928 0.66923 0.66935 0.66927 0.66928 0.66923 0.66935 12.29936758 3.540331608

Alveo u200 - Optimised 1 25000 1.04483 1.04481 1.04480 1.04483 1.04479 1.04481 1.04479 1.04483 10.77423626 3.448452373

Alveo u200 - Optimised 1 30000 1.50364 1.50363 1.50361 1.50367 1.50364 1.50364 1.50361 1.50367 12.64042429 3.415779967

Alveo u200 vs Intel Cortex E5649 (1 Option, Varying Steps)

Time Taken (s) Speedup
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17.2 US Binomial Tree 

 

 

  

Time Taken (s)

Platform # of Options # of Steps 1 2 3 4 5 Average Min Max Unoptimised Optimised

Cortex-A9 - Unoptimised 1 5000 2.40563 2.40311 2.40412 2.40290 2.40421 2.40399 2.40290 2.40563 - -

Cortex-A9 - Unoptimised 1 10000 9.70573 9.69801 9.69911 9.69877 9.70611 9.70155 9.69801 9.70611 - -

Cortex-A9 - Unoptimised 1 15000 21.88975 21.88464 21.88628 21.88752 21.88243 21.88613 21.88243 21.88975 - -

Cortex-A9 - Unoptimised 1 20000 39.41257 39.41329 39.41614 39.40258 39.40512 39.40994 39.40258 39.41614 - -

Cortex-A9 - Unoptimised 1 25000 60.90524 60.91793 60.91740 60.90192 60.91643 60.91178 60.90192 60.91793 - -

Cortex-A9 - Unoptimised 1 30000 87.74519 87.77076 87.76148 87.78271 87.81878 87.77578 87.74519 87.81878 - -

Cortex-A9 - Optimised 1 5000 0.63707 0.62877 0.61802 0.62407 0.61363 0.62431 0.61363 0.63707 - -

Cortex-A9 - Optimised 1 10000 2.66539 2.66577 2.66054 2.66438 2.66108 2.66343 2.66054 2.66577 - -

Cortex-A9 - Optimised 1 15000 6.17753 6.16331 6.16534 6.16981 6.17506 6.17021 6.16331 6.17753 - -

Cortex-A9 - Optimised 1 20000 11.30451 11.29616 11.31415 11.29508 11.29923 11.30182 11.29508 11.31415 - -

Cortex-A9 - Optimised 1 25000 17.42825 17.43536 17.43826 17.43578 17.43370 17.43427 17.42825 17.43826 - -

Cortex-A9 - Optimised 1 30000 25.20698 25.17235 25.17132 25.17961 25.18185 25.18242 25.17132 25.20698 - -

Zynq Z7020 - Unoptimised 1 5000 3.50232 3.50232 3.50233 3.50230 3.50231 3.50231 3.50230 3.50233 0.68640 0.17826

Zynq Z7020 - Unoptimised 1 10000 14.00442 14.00441 14.00441 14.00441 14.00442 14.00441 14.00441 14.00442 0.69275 0.19019

Zynq Z7020 - Unoptimised 1 15000 31.50666 31.50667 31.50665 31.50663 31.50664 31.50665 31.50663 31.50667 0.69465 0.19584

Zynq Z7020 - Unoptimised 1 20000 56.00888 56.00886 56.00885 56.00884 56.00885 56.00886 56.00884 56.00888 0.70364 0.20179

Zynq Z7020 - Unoptimised 1 25000 87.51088 87.51122 87.51119 87.51109 87.51111 87.51110 87.51088 87.51122 0.69605 0.19922

Zynq Z7020 - Unoptimised 1 30000 126.01346 126.01304 126.01304 126.01307 126.01308 126.01314 126.01304 126.01346 0.69656 0.19984

Zynq Z7020 - Optimised 1 5000 0.12696 0.12696 0.12696 0.12696 0.12695 0.12696 0.12695 0.12696 18.93534 4.91747

Zynq Z7020 - Optimised 1 10000 0.50376 0.50369 0.50369 0.50370 0.50370 0.50371 0.50369 0.50376 19.26021 5.28763

Zynq Z7020 - Optimised 1 15000 1.13047 1.13046 1.13046 1.13049 1.13046 1.13047 1.13046 1.13049 19.36026 5.45811

Zynq Z7020 - Optimised 1 20000 2.00720 2.00720 2.00721 2.00720 2.00722 2.00720 2.00720 2.00722 19.63424 5.63063

Zynq Z7020 - Optimised 1 25000 3.13398 3.13397 3.13397 3.13397 3.13397 3.13397 3.13397 3.13398 19.43596 5.56299

Zynq Z7020 - Optimised 1 30000 4.51071 4.51071 4.51070 4.51072 4.51072 4.51071 4.51070 4.51072 19.45941 5.58280

Zynq-7020 vs Cortex A9 (1 option, varying depth)

Speedup

Platform # of Options # of Steps 1 2 3 4 5 Average Min Max Unoptimised Optimised

Intel Xeon E5649 - Unoptimised 1 5000 0.17384 0.17485 0.17552 0.17273 0.15328 0.17004 0.15328 0.17552 - -

Intel Xeon E5649 - Unoptimised 1 10000 0.58573 0.58967 0.59563 0.59041 0.59782 0.59185 0.58573 0.59782 - -

Intel Xeon E5649 - Unoptimised 1 15000 1.41807 1.40876 1.40820 1.38936 1.41578 1.40803 1.38936 1.41807 - -

Intel Xeon E5649 - Unoptimised 1 20000 2.43171 2.43589 2.42802 2.43685 2.43126 2.43275 2.42802 2.43685 - -

Intel Xeon E5649 - Unoptimised 1 25000 3.59513 3.81899 3.71960 3.58705 3.59277 3.66271 3.58705 3.81899 - -

Intel Xeon E5649 - Unoptimised 1 30000 4.67090 4.66391 4.66401 4.66852 4.66649 4.66676 4.66391 4.67090 - -

Intel Xeon E5649 - Optimised 1 5000 0.07401 0.09790 0.09689 0.09935 0.10329 0.09429 0.07401 0.10329 - -

Intel Xeon E5649 - Optimised 1 10000 0.31249 0.31557 0.31162 0.30978 0.31255 0.31240 0.30978 0.31557 - -

Intel Xeon E5649 - Optimised 1 15000 0.62801 0.65257 0.63024 0.63019 0.65926 0.64005 0.62801 0.65926 - -

Intel Xeon E5649 - Optimised 1 20000 1.14645 1.14910 1.13631 1.14882 1.14695 1.14552 1.13631 1.14910 - -

Intel Xeon E5649 - Optimised 1 25000 1.77241 1.77076 1.77105 1.73972 1.75497 1.76178 1.73972 1.77241 - -

Intel Xeon E5649 - Optimised 1 30000 2.45401 2.48675 2.44058 2.48333 2.47994 2.46892 2.44058 2.48675 - -

Alveo u200 - Unoptimised 1 5000 0.08525 0.08521 0.08518 0.08533 0.08523 0.08524 0.08518 0.08533 1.994857257 1.10612

Alveo u200 - Unoptimised 1 10000 0.33660 0.33672 0.33658 0.33660 0.33664 0.33663 0.33658 0.33672 1.758165889 0.92803

Alveo u200 - Unoptimised 1 15000 0.75469 0.75466 0.75468 0.75465 0.75470 0.75467 0.75465 0.75470 1.865749386 0.84812

Alveo u200 - Unoptimised 1 20000 1.33944 1.33939 1.33949 1.33944 1.33938 1.33943 1.33938 1.33949 1.816261579 0.85523

Alveo u200 - Unoptimised 1 25000 2.09075 2.09076 2.09077 2.09080 2.09081 2.09078 2.09075 2.09081 1.751838535 0.84264

Alveo u200 - Unoptimised 1 30000 3.00883 3.00884 3.00881 3.00889 3.00873 3.00882 3.00873 3.00889 1.551027946 0.82056

Alveo u200 - Optimised 1 5000 0.04315 0.04324 0.04314 0.04315 0.04327 0.04319 0.04314 0.04327 3.937352388 2.18320

Alveo u200 - Optimised 1 10000 0.16930 0.16917 0.16922 0.16926 0.16927 0.16925 0.16917 0.16930 3.49699076 1.84586

Alveo u200 - Optimised 1 15000 0.37862 0.37855 0.37858 0.37859 0.37854 0.37858 0.37854 0.37862 3.719275983 1.69068

Alveo u200 - Optimised 1 20000 0.67124 0.67124 0.67126 0.67131 0.67122 0.67125 0.67122 0.67131 3.624181904 1.70654

Alveo u200 - Optimised 1 25000 1.04728 1.04723 1.04725 1.04730 1.04724 1.04726 1.04723 1.04730 3.497419552 1.68228

Alveo u200 - Optimised 1 30000 1.50667 1.50653 1.50666 1.50664 1.50663 1.50663 1.50653 1.50667 3.097493738 1.63871

ALVEO vs INTEL (1 Option, Varying Depth)

Time Taken (s) Speedup
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17.3 Combined Binomial Tree 

 

 

17.4 Monte Carlo 

 

 

  

Platform # of Options # of Steps 1 2 3 4 5 Average Min Max Unoptimised Optimised

Intel Xeon E5649 - Unoptimised 1 5000 0.61711 0.61818 0.61921 0.61958 0.61603 0.61802 0.61603 0.61958 - -

Intel Xeon E5649 - Unoptimised 1 10000 2.59083 2.58903 2.59041 2.59619 2.58976 2.59124 2.58903 2.59619 - -

Intel Xeon E5649 - Unoptimised 1 15000 5.78608 5.78828 5.81405 5.79085 5.79234 5.79432 5.78608 5.81405 - -

Intel Xeon E5649 - Unoptimised 1 20000 10.28546 10.33180 10.33496 10.29659 10.29351 10.30846 10.28546 10.33496 - -

Intel Xeon E5649 - Unoptimised 1 25000 16.65781 16.25471 16.24904 16.21849 16.25177 16.32636 16.21849 16.65781 - -

Intel Xeon E5649 - Unoptimised 1 30000 23.23902 23.24938 23.31878 23.25646 23.58140 23.32901 23.23902 23.58140 - -

Intel Xeon E5649 - Optimised 1 5000 0.19206 0.21562 0.21773 0.21569 0.22160 0.21254 0.19206 0.22160 - -

Intel Xeon E5649 - Optimised 1 10000 0.84481 0.84219 0.84625 0.84616 0.84601 0.84508 0.84219 0.84625 - -

Intel Xeon E5649 - Optimised 1 15000 1.93885 1.93670 1.94058 1.93904 1.93978 1.93899 1.93670 1.94058 - -

Intel Xeon E5649 - Optimised 1 20000 3.32838 3.27759 3.32542 3.30298 3.32656 3.31218 3.27759 3.32838 - -

Intel Xeon E5649 - Optimised 1 25000 5.10219 5.06108 5.07458 5.08841 5.09957 5.08517 5.06108 5.10219 - -

Intel Xeon E5649 - Optimised 1 30000 7.31885 7.51423 7.26228 7.29699 7.25717 7.32990 7.25717 7.51423 - -

Alveo u200 1 5000 0.04318 0.04321 0.04326 0.04324 0.04319 0.04322 0.04318 0.04326 14.30048972 4.9179729

Alveo u200 1 10000 0.16921 0.16920 0.16930 0.16927 0.16929 0.16925 0.16920 0.16930 15.30982948 4.9930065

Alveo u200 1 15000 0.37858 0.37856 0.37862 0.37861 0.37860 0.37860 0.37856 0.37862 15.30478432 5.1215352

Alveo u200 1 20000 0.67130 0.67130 0.67127 0.67129 0.67129 0.67129 0.67127 0.67130 15.35612482 4.9340352

Alveo u200 1 25000 1.04727 1.04732 1.04729 1.04733 1.04728 1.04730 1.04727 1.04733 15.58906565 4.8555195

Alveo u200 1 30000 1.50665 1.50665 1.50666 1.50667 1.50673 1.50667 1.50665 1.50673 15.48380788 4.8649658

SpeedupTime Taken (s)

ALVEO vs INTEL (1 Option, Varying Steps)

Platform # of Paths # of Steps 1 2 3 4 5 Average Min Max Speedup

Cortex-A9 100 100 0.01757 0.01762 0.01761 0.01754 0.01750 0.01757 0.01750 0.01762 -

Cortex-A9 1000 100 0.17144 0.17319 0.17300 0.17290 0.171576 0.17242 0.17144 0.17319 -

Cortex-A9 10000 100 1.72717 1.71261 1.72999 1.72745 1.72855 1.72515 1.71261 1.72999 -

Cortex-A9 100000 100 17.41424 17.25345 17.20711 17.27068 17.23626 17.27635 17.20711 17.41424 -

Cortex-A9 1000000 100 175.24926 173.03333 174.12351 173.69360 172.68856 173.75765 172.68856 175.24926 -

Zynq Z7020 - Unoptimised 100 100 0.01519 0.01521 0.01527 0.01518 0.01518 0.01521 0.01518 0.01527 1.155259489

Zynq Z7020 - Unoptimised 1000 100 0.14980 0.14978 0.14979 0.14980 0.14980 0.14979 0.14978 0.14980 1.151085784

Zynq Z7020 - Unoptimised 10000 100 1.49582 1.49578 1.49578 1.49578 1.49576 1.49578 1.49576 1.49582 1.153342647

Zynq Z7020 - Unoptimised 100000 100 14.95554 14.95517 14.95525 14.95528 14.95533 14.95531 14.95517 14.95554 1.1551978

Zynq Z7020 - Unoptimised 1000000 100 149.55240 149.55015 149.54889 149.55042 149.55122 149.55062 149.54889 149.55240 1.161865182

PYNQ vs ARM (Varying # paths, fixed steps)

Time Taken (s)

Platform # of Paths # of Steps 1 2 3 4 5 Average Min Max Unoptimised Optimised

Intel Xeon E5649 - Unoptimised 100 100 0.00502 0.00504 0.00503 0.00502 0.00507 0.00504 0.00502 0.00507 - -

Intel Xeon E5649 - Unoptimised 1000 100 0.04726 0.04738 0.04744 0.04762 0.045409 0.04702 0.04541 0.04762 - -

Intel Xeon E5649 - Unoptimised 10000 100 0.34018 0.33613 0.33949 0.31743 0.33926 0.33450 0.31743 0.34018 - -

Intel Xeon E5649 - Unoptimised 100000 100 2.96234 2.97870 2.97359 2.99220 3.17460 3.01628 2.96234 3.17460 - -

Intel Xeon E5649 - Unoptimised 1000000 100 27.06692 26.65196 26.94075 27.15231 26.86714 26.93582 26.65196 27.15231 - -

Intel Xeon E5649 - Optimised 100 100 0.00379 0.00378 0.00370 0.00380 0.00380 0.00378 0.00370 0.00380 - -

Intel Xeon E5649 - Optimised 1000 100 0.03556 0.03617 0.03623 0.03620 0.03382 0.03560 0.03382 0.03623 - -

Intel Xeon E5649 - Optimised 10000 100 0.26291 0.26067 0.25837 0.25495 0.26783 0.26094 0.25495 0.26783 - -

Intel Xeon E5649 - Optimised 100000 100 2.25671 2.30523 2.29048 2.29649 2.30113 2.29001 2.25671 2.30523 - -

Intel Xeon E5649 - Optimised 1000000 100 20.19618 20.14883 20.15809 20.15820 20.19883 20.17203 20.14883 20.19883 - -

Alveo u200 - Unoptimised 100 100 0.00916 0.00921 0.00928 0.00920 0.00923 0.00922 0.00916 0.00928 0.54649 0.40972

Alveo u200 - Unoptimised 1000 100 0.08757 0.08761 0.08758 0.08757 0.08761 0.08759 0.08757 0.08761 0.53684 0.40639

Alveo u200 - Unoptimised 10000 100 0.87092 0.87098 0.87097 0.87102 0.87093 0.87096 0.87092 0.87102 0.38406 0.29960

Alveo u200 - Unoptimised 100000 100 8.70440 8.70439 8.70440 8.70435 8.70438 8.70438 8.70435 8.70440 0.34652 0.26309

Alveo u200 - Unoptimised 1000000 100 87.03890 87.03886 87.03888 87.03881 87.03888 87.03887 87.03881 87.03890 0.30947 0.23176

Alveo u200 - Optimised 100 100 0.02256 0.02260 0.02255 0.02254 0.02249 0.02255 0.02249 0.02260 0.22335 0.16745

Alveo u200 - Optimised 1000 100 0.22107 0.22123 0.22111 0.22115 0.22114 0.22114 0.22107 0.22123 0.21263 0.16096

Alveo u200 - Optimised 10000 100 2.20649 2.20652 2.20651 2.20652 2.20658 2.20652 2.20649 2.20658 0.15159 0.11826

Alveo u200 - Optimised 100000 100 22.06053 22.06057 22.06052 22.06055 22.06061 22.06056 22.06052 22.06061 0.13673 0.10381

Alveo u200 - Optimised 1000000 100 220.60091 220.60072 220.60085 220.60088 220.60085 220.60084 220.60072 220.60091 0.12210 0.09144

ALVEO vs INTEL (1 Option, Varying Depth)

SpeedupTime Taken (s)
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18. Appendix 7 – User Guide 

18.1. Introduction 

18.1.1 Overview 

This user guide sets out to inform users how to build and execute the code listed in [1]. This 

collection of code was developed as part of a Master’s thesis at the University of Liverpool. 

The supporting dissertation and results are also listed in [1]. 

 

18.1.2 Requirements 

Firstly, users must clone the Github repository listed in [1]. Following this, users must have 

the following: 

• A Pynq-Z2 board with the relevant board image installed. Instructions on how to 

install this board image can be found at [2]. 

• An Alveo u200 mounted and setup for your system. Installation instructions for the 

Alveo u200 card can be found at [3]. 
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18.2. Pynq-Z2 

After installing the Pynq-Z2 board image, navigate to http://pynq in your web browser which 

will open the Jupyter environment. From here, click the “new” button towards the top right-

hand side of the environment and then select “folder”. 

 

 

 

We can rename this folder by selecting the check box to the left of it and then clicking 

“rename” towards the top left-hand side of the environment. 

 

 

Rename the folder to the name of the algorithm you are going to use, e.g. European Binomial 

Tree. Navigate into the folder by clicking it. You can then upload the algorithm to the Pynq-

Z2 by clicking on the “upload” button towards the top right-hand side of the environment. 

 

 

 

Navigate to the cloned Github repository on your computer and navigate into the folder of the 

algorithm you wish to use. Navigate to the “Pynq-Z2” folder and then upload all of the 

contents in this folder. 

You can now run the algorithm through the Jupyter environment or through the command 

line. To run in the Jupyter environment, click on the .ipynb file that you uploaded. This will 

http://pynq/
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launch the Jupyter notebook, the algorithm can then be run by clicking the “Run” button 

towards the top of the notebook. 

 

 

 

You will have to click run for each cell in the notebook, alternatively you can press shift + 

enter to execute each cell in the notebook. To execute via command line, first navigate to the 

algorithms folder. From here, you can execute the .py file that you uploaded, for example: 

 

sudo python3 eubinomialtree.py 

 

The Python file must be executed with the “suffix” prefix. If a number of zeroes appear in 

the output, simply execute the file again as the cache coherency on the Pynq-Z2 will have 

failed. 

 

18.2.1 Binomial Tree 

A file called option_data.txt is included for the Binomial Trees algorithm. Here, you can 

enter data for up to 25 options. The price for all options will then be returned at the end in the 

form of an array. 

 

 

 

 

 

 

 



 

 50  

 

18.2.2 Monte Carlo 

For the Monte Carlo simulation, the stock data and simulation data are set in the 

notebook/Python file themselves. The data is set in cell 5 of the notebook or between lines 

121 and 130 of the Python file. These values must be set before you execute the notebook or 

Python file. 

 

 

  



 

 51  

 

18.3. Alveo u200 

Start by creating a new SDAccel Application Project, this is done by clicking file -> new -> 

SDAccel Application Project. Ensure that you select the Alveo u200 platform and create an 

empty application. 

 

 

 

Following this, we are ready to import the source files into the project. If you are working on 

a remote server, you must first upload the relevant SDAccel and HLS files from the Github 

repository (NOTE: for the Monte Carlo algorithm there is a separate HLS file for the Pynq-

Z2 and Alveo u200 implementation). Following this, right click on the “src” folder of the 

project and select “import”. Then select “General -> File System” and navigate to where the 

source files are on your system. Highlight them and click “finish”. 

 

 

Now add a hardware function to the project. This is done by clicking the lightning icon next 

to the “Hardware Functions” title. Select the name of the top level function for the algorithm 
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– this is always the name of the type of algorithm you are running, for example if running a 

Binomial Tree algorithm, the top-level function is “binomial_tree”. 

 

 

 

 

The project is now ready to be built. The C code and hardware design can be verified by 

selecting either the sw_emu or hw_emu build configuration. To build for the FPGA, select 

System (NOTE: building for the FPGA takes a minimum of 3 hours for the Binomial Tree 

algorithms and 10 hours for the Monte Carlo algorithms). After selecting the build 

configuration, click on the hammer icon in the toolbar. 

 

 

 

After the project is built, select the “Run” menu on the toolbar and then select “Run 

Configurations”. Select the Arguments tab and ensure that “Automatically add binary 

container(s) to arguments” is selected. 
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Following this, the build project can be executed by clicking the play button on the menu bar. 

 

 

 

The built program can also be executed from the command line. If executing a sw_emu build, 

you must first type the following: 

export XCL_EMULATION_MODE=sw_emu 

 

If executing a hw_emu build, you must type the following: 

export XCL_EMULATION_MODE=hw_emu 

 

The build project can then be executed by typing, for example: 

./EUBinomialTree.exe ./binary_container_1.xclbin 

 

18.3.1 Binomial Tree 

A file called option_data.txt is included for the Binomial Trees algorithm. Here, you can 

enter data for up to 25 options. The price for all options will then be returned at the end in the 

form of an array. 
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NOTE: If executing a Binomial Tree algorithm from the SDAccel environment, the 

option_data.txt file MUST be placed in the relevant build folder. For example, if running for 

System build, place the option data file in the “System” folder. If executing via command line 

the option_data.txt file MUST be placed in the root of the projects folder. 

 

18.3.2 Monte Carlo 

For the Monte Carlo simulation, the option data is set in the “host.cpp” file. The data is set 

between lines 31 and 39. If these data are changed, the host file will be recompiled once you 

run the project. Assuming no changes have been made to the HLS code, only the host file 

will be recompiled, not the entire project.  
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19. Appendix 8 – Project Log 

Date Task 

11/06/2019 Weekly review meeting 

18/06/2019 Weekly review meeting 

25/06/2019 Weekly review meeting 

02/07/2019 Weekly review meeting 

04/07/2019 Submitted project report 

09/07/2019 Implemented Black-Scholes formula on Pynq-Z2, transferring 

floats to and from Zynq-7020 

09/07/2019 Weekly review meeting 

15/07/2019 Redefined project scope 

16/07/2019 Weekly review meeting 

18/07/2019 Added Mersenne-Twister and Box-Muller algorithm for 

generating random numbers 

23/07/2019 Weekly review meeting 

27/07/2019 Initial implementation of European Binomial Tree algorithm on 

CPU 

30/07/2019 Weekly review meeting 

01/08/2019 Initial implementation of American Binomial Tree algorithm on 

CPU 

05/08/2019 Implemented European and American Binomial Tree algorithm 

on Zynq-7020 

06/08/2019 Weekly review meeting 

08/08/2019 Implemented Taylor series to approximate the value of 

exponential function, combined power calculation into for loop on 

Zynq-7020 

11/08/2019 Porting European and American Binomial Tree algorithm to 

Alveo u200 

13/08/2019 Weekly review meeting 

15/08/2019 Removing unnecessary reads/writes from Binomial Tree 

algorithm, combined for loops to reduce work 

19/08/2019 Finalised Binomial Tree algorithms on Zynq-7020 and Alveo u200 

20/08/2019 Weekly review meeting 

21/08/2019 Converted Box-Muller algorithm to not have a for loop, 

significantly reduced the depth of unrolling 

25/08/2019 Implemented Monte Carlo algorithm on Pynq-Z2 and Alveo u200 

27/08/2019 Weekly review meeting 
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29/09/2019 Implemented combined Binomial Tree algorithm on Alveo u200 

02/09/2019 Implemented burst buffer write for Monte Carlo algorithm 

03/09/2019 Weekly review meeting 

09/09/2019 Finished collecting results 

10/09/2019 Weekly review meeting 

18/09/2019 Weekly review meeting 

19/09/2019 Submitted dissertation 

 


