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Abstract 
In recent years, a Field Programmable Gate Array (FPGA) has become a popular 

technology for many different fields in computer science. FPGA technology enables 

programmers to develop their own circuit for specific purposes without having to 

produce an application-specific integrated circuit (ASIC). In some specific applications, 

FPGA technology provides better performance than CPU. For example, in this project, 

we designed bitstreams on FPGA to calculate eigenvalues and eigenvectors which 

provides better performance than CPU. As a result, FPGA can be deployed in HPC 

environment because programmers are able to change the overlays in FPGA anytime, 

which makes they can design specific applications in FPGA.  

Finding eigenvalues is an important mathematical technique for many fields in 

computer science. This dissertation hypothesizes that such a process can be efficiently 

implemented on an FPGA. We consider two popular algorithms to determine 

eigenvalues, namely the QR algorithm and Jacobi method. We implemented the QR 

algorithm and Jacobi method on two FPGA platforms that are PYNQ Z2 [11] and Xilinx 

Alveo U200 [31] to accelerate the process of finding eigenvalues and eigenvectors for 

real symmetric matrices. Utilizing the techniques of implementing code on FPGA, the 

original code for CPU can be optimized and ported to FPGA platforms. Moreover, the 

implementations with specific settings on FPGA can achieve better performance than 

CPU. 
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1. Introduction 

    Finding the eigenvalues and related eigenvectors of a system is important to many 

fields. For example, Principle Component Analysis [1] is an important technique in data 

mining and machine learning. PCA projects high dimension data points into lower 

dimension. By finding the dominant eigenvalue of a covariance matrix, it is the 

maximum variance of the high dimension data points. The computational cost of 

finding eigenvalues and eigenvectors can be prohibitively large when the dimension of 

matrices is large. Eigenvalues and eigenvectors can be used in computer vision as well. 

For example, in face detection, it needs eigenvectors of a covariance vector in PCA to 

achieve its goal. 

There are some approaches to accelerate this finding process. Many 

programmers utilize GPUs for this purpose. Furthermore, a Field Programmable Gate 

Array (FPGA) can be used to accelerate this process as well. FPGA has lower latency of 

inputting data than GPU. FPGA can receive data from many different interfaces such 

as PCI-E, UART, USB and so on. Microsoft’s paper [2] accelerated Deep Conventional 

Neural Network [3] (CNN) using FPGA technology has shown that such technology can 

achieve lower power consumption and higher performance than GPUs. Moreover, 

programmers can design customized overlay for FPGA boards with software language 

like C/C++ or OpenCL. As a result, they can make a customized circuit without the 

prohibitive costs of investing in an Application Specific Integrated Circuit (ASIC). Some 

cloud platforms like Nimbix or AWS provide Xilinx Alveo U200 [4] instance which is an 

HPC environment. The specification of Alveo U200 will be mentioned in section 3.1. 

    The remainder of section 1 explains the algorithms for determining eigenvalues 

and eigenvectors, resources and developing techniques on FPGA, and aims. Section 2 

is related work. In section 3, it describes how to implement the designs of both 

algorithms. In section 4, it represents the result and evaluation. In section 5, it 

discusses data type on FPGA and learning points. And section 6 and 7 are future work 

and conclusion. 

1.1 Algorithms for Eigenvalues 

For software development, programmers don’t solve eigenvalues by utilizing the 

function 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0, especially, when the dimension of matrices is large. In 

practical design, programmers utilize approximate algorithms to find eigenvalues and 
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eigenvectors in matrices, and typically based on a number of iterations. The QR 

algorithm [5] is the most popular approach for this purpose and is applicable for 

general matrices. Alternatively, the Jacobi eigenvalue method [6] can be used for real 

symmetric matrices only. These methods are discussed in more detail below but note 

that both algorithms apply Givens rotation for transforming matrices. Therefore, we 

first outline what is meant by a Givens rotation. The eigenvalues of real symmetric 

matrices are real eigenvalues. For non-symmetric real matrices, their eigenvalues 

might be real or complex.  

1.1.1 Givens Rotation 

    A Givens rotation [7] matrix G(i, j, θ)  can be utilized to calculate orthogonal 

matrices in QR factorization and the eigenvalues in Jacobi method. The typical form 

for a Givens matrix is: 

 

 

 

𝐺(𝑖, 𝑗, 𝜃) =

[
 
 
 
 
 
 
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑐
⋮      ⋮
0 ⋯ 𝑠
⋮      ⋮
0 ⋯ 0

 ⋯ 0
     ⋮

   ⋯ −𝑠

 ⋱ ⋮
 ⋯ 𝑐
      ⋮
 ⋯ 0

 ⋯ 0
    ⋮
 ⋯ 0
    ⋮
 ⋯ 0
 ⋱ ⋮
 ⋯ 1]

 
 
 
 
 
 

     

By applying the Givens rotation, it can eliminate element 𝑎𝑗𝑖  . c in Givens rotation 

means cosθ , s means sinθ . There are many ways to decide θ . However, for both 

algorithms, they utilized different ways to decide the values of sin and cos without 

having a specific 𝜃. In order to explain the idea of Givens rotation, we illustrate an 

approach to decide sin and cos by the following example. Let matrix 𝐴1 

𝐴1 = [
6 5 0
5 1 4
0 4 3

] 

Let i=1 and j=2, we want to eliminate element 𝑎21. We can transform this matrix to 

A2 which contains 𝑎′21 = 0 by applying a Givens rotation. For i=1 and j = 2, setting 

cosθ =
𝑎11

√𝑎11
2 +𝑎21

2
=

6

√62+52
 and sinθ = −

𝑎21

√𝑎11
2 +𝑎21

2
= −

5

√62+52
. The Givens matrix 

G1 is 

i 

i 

j 

j 
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𝐺1 = [
𝑐 −𝑠 0
𝑠 𝑐 0
0 0 1

] ≈ [
0.7682 0.6402 0

−0.6402 0.7682 0
0 0 1

] 

We then obtain the new matrix 𝐴2 is 

𝐺1𝐴1 = 𝐴2  ≈  [
7.8102 4.4813 2.5607

0 −2.4327 3.0729
0 4 3

] 

The example above is one way to calculate the values of sin and cos, there are 

other approaches to get sin and cos which will be presented in 1.1.2 and 1.1.3 

respectively. This project only need to utilize sqrt() instead of sin() and cos() functions  

to calculate the values of sin and cos. By utilizing elements in matrices, it can get the 

values of sin and cos. 

1.1.2 QR algorithm 

QR algorithm [5] utilizes QR factorization to find an orthogonal matrix. Any matrix 

can be decomposed into two matrices Q and R, where R is an upper triangular matrix, 

and Q is an orthogonal matrix. The decomposition may not be unique.  

By using a series of Givens rotation to eliminate all the lower triangular elements 

in A, the matrix A can be transformed iteratively to determine the upper triangular 

matrix R, and the orthogonal matrix Q will be the products of the Givens rotations: 

A = QR 

Q =  G1
𝑇G2

T …Gn
T 

R = QTA 

The QR algorithm utilized Q and R to create a new matrix. Let a matrix 𝐴𝑘 which is 

decomposed to Qk and Rk. By using Rk multiplies Qk , an new matrix Ak+1 can be 

created. Ak+1 has the same eigenvalues and eigenvectors with Ak 

Ak+1 = RkQk 

Moreover, the QR algorithm can only use orthogonal matrices for calculation. 

Ak+1 = Qk
TAkQk 

 

In [5], it has mentioned the upper Hessenberg form can decrease the 

convergence time of the QR algorithm. So, at beginning, matrices should be 

transformed to upper Hessenberg form in order to decrease time of convergence. By 

using Givens rotation, a matrix can be transformed to upper Hessenberg form. 

[

𝑎11 𝑎12

𝑎21 𝑎22

𝑎13 𝑎14

𝑎23 𝑎24

  0  𝑎32

0 0

𝑎33 𝑎34

𝑎43 𝑎44

] 
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Also, by adding shift mechanism to this process, it can decrease time of convergence 

as well. By subtracting diagonal elements with a shift value, the subtracted matrix has 

the same eigenvalues with the original one but utilizing the subtracted matrix to do 

QR factorization can decrease the time of doing QR factorization. However, after doing 

each QR factorization, the new matrix needs to add shift value back to diagonal 

elements which is new matrix 𝐴𝑘+1. The value of shifting can be set to ann which is 

the element at last column and last row in Ak 

Ak − ukI = QkRk, uk = ann 

Ak+1 = Qk
T(Ak − ukI)Qk + ukI = Qk

TAkQk 

After doing QR factorization and calculating new matrix A repeatedly, non-diagonal 

elements are eliminated to 0. Eigenvalues are diagonal elements in the final matrix. 

Furthermore, eigenvectors can be calculated with Qs during the process. 

 

EVs = Q1Q2 …Qn 

 

Figure 1.1.1 The Process of QR algorithm 

    The whole process of the QR algorithm is figure 1.1.1, a matrix is transformed to 

an upper Hessenberg matrix at beginning. And, the Hessenberg matrix is put into a 

loop which would be stopped when a matrix is convergent. The condition of 

convergence is that the diagonal elements in a new matrix are the same as previous 

matrix. In the loop, it does QR factorization and create a new matrix with R and Q. Also, 

eigenvectors are calculated during this process. If the size of a matrix is n and the 

number of loops before convergence is m. The time complexity of the Hessenberg 

transformation is O(n3) . It eliminates lower-triangular elements to zeros in matrix 
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which is O(n2) , and the process of elimination is O(n) . Moreover, the time 

complexity of the loop is O(mn2). Let the loop convergent after m times, and it does 

QR factorization every time. In the calculation of new matrix, it contains the 

elimination of lower triangular elements and calculation of eigenvectors. Both 

processes can be done together. Because there is a Hessenberg matrix in the loop, 

there are only n-1 lower triangular elements in it, and the process of elimination is 

O(n), the time complexity of QR algorithm is O(n3) + O(mn2).The calculation of Q 

matrices and eigenvectors can be done at the same time. The QR factorization can be 

done in parallel. However, implementation of QR algorithm needs to do elimination of 

elements one by one currently because each elimination can affect others. 

 

Figure 1.1.2 Loops of the QR Algorithm 

As figure 1.1.2, the loop subtracts the diagonal elements in a matrix with a shift 

value first. And, it does the QR factorization. QR factorization eliminates lower-

triangular elements in the matrix, it needs to calculate the value of sin or cos for every 

lower-triangular element. Also, it calculates a new matrix and eigenvectors when 

having the Givens matrices with specific sin and cos for each lower-triangular element. 

At the end, this loop adds shift value back to diagonal elements and checks whether a 

matrix is convergent. Figure 1.1.3 shown an approach of calculating the values of sin 

and cos for QR algorithm. This approach is mentioned in [7]. The Calc_Geivens gets 2 

elements which are diagonal element and the element under the diagonal element at 

beginning, and it calculate the value of sin and cos. 
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Figure 1.1.3 The Calculation of Sin and Cos for The QR Algorithm [7] 

1.1.3 Jacobi Eigenvalue Method 

    The Jacobi eigenvalue method [8] is used for real symmetric matrices. Let a real 

symmetric matrix 𝐴𝑘 is calculated with a Givens rotation matrix 𝐺𝑘 to create a new 

symmetric matrix 𝐴𝑘+1. By applying the function, Jacobi method can eliminate non-

diagonal elements in a matrix. As a result, there will be only diagonal elements in a 

matrix. A matrix is convergent. Eigenvalues are diagonal elements in the convergent 

matrix. 

Ak+1 = Gk𝐴𝑘𝐺𝑘
𝑇 

Let a 4x4 real symmetric matrix and 𝐺𝑘  =  G(2,4, θ), the new Ak+1 is 
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𝐴𝑘+1 = [

1 0
0 𝑐

0 0
0 −𝑠

0 0
0 𝑠

1 0
0 𝑐

] [

𝑎11 𝑎12

𝑎21 𝑎22

𝑎13 𝑎14

𝑎23 𝑎24
𝑎31 𝑎32

𝑎41 𝑎42

𝑎33 𝑎34

𝑎43 𝑎44

] [

1 0
0 𝑐

0 0
0 𝑠

0 0
0 −𝑠

1 0
0 𝑐

] 

 

= [

𝑎11 𝑎12

𝑐𝑎21 − 𝑠𝑎41 𝑐𝑎22 − 𝑠𝑎42

𝑎13 𝑎14

𝑐𝑎23 − 𝑠𝑎43 𝑐𝑎24 − 𝑠𝑎44
𝑎31 𝑎32

𝑠𝑎21 + 𝑐𝑎41 𝑠𝑎22 + 𝑐𝑎42

𝑎33 𝑎34

𝑠𝑎23 + 𝑐𝑎43 𝑠𝑎24 + 𝑐𝑎44

] [

1 0
0 𝑐

0 0
0 𝑠

0 0
0 −𝑠

1 0
0 𝑐

] 

 

= [

1 0
0 𝑐

0 0
0 −𝑠

0 0
0 𝑠

1 0
0 𝑐

] [

𝑎11 𝑐𝑎12 − 𝑠𝑎14

𝑎21 𝑐𝑎22 − 𝑠𝑎24

𝑎13 𝑠𝑎12 + 𝑐𝑎14

𝑎23 𝑠𝑎22 + 𝑐𝑎24
𝑎31 𝑐𝑎32 − 𝑠𝑎34

𝑎41 𝑐𝑎42 − 𝑠𝑎44

𝑎33 𝑠𝑎32 + 𝑐𝑎34

𝑎43 𝑠𝑎42 + 𝑐𝑎44

]  

 

= [

𝑎11 𝑐𝑎12 − 𝑠𝑎14

𝑐𝑎21 − 𝑠𝑎41 𝑎′22

𝑎13 𝑠𝑎12 + 𝑐𝑎14

𝑐𝑎23 − 𝑠𝑎43 𝑎′24
𝑎31 𝑐𝑎32 − 𝑠𝑎34

𝑠𝑎21 + 𝑐𝑎41 𝑎′42

𝑎33 𝑠𝑎32 + 𝑐𝑎34

𝑠𝑎23 + 𝑐𝑎43 𝑎′44

] 

where 

𝑎22
′ = 𝑐(𝑐𝑎22 − 𝑠𝑎42) − 𝑠(𝑐𝑎24 − 𝑠𝑎44) = 𝑐2𝑎22 − 𝑐𝑠𝑎42 − 𝑠𝑐𝑎24 + 𝑠2𝑎44 

𝑎44
′ = 𝑠(𝑠𝑎22 + 𝑐𝑎42) + 𝑐(𝑠𝑎24 + 𝑐𝑎44) = 𝑠2𝑎22 + 𝑐𝑠𝑎42 + 𝑐𝑠𝑎24 + 𝑐2𝑎44 

𝑎′24 = 0 = 𝑎44
′  

 

Looking at elements in 𝐴𝑘+1  generally, 𝑎𝑖𝑖
′  , 𝑎𝑗𝑗

′  and 𝑎𝑖𝑗
′  can be calculated with 

functions below. 

𝑎𝑖𝑖
′ = 𝑐2𝑎𝑖𝑖 − 2𝑐𝑠𝑎𝑖𝑗 + 𝑠2𝑎𝑗𝑗 

𝑎𝑗𝑗
′ = 𝑠2𝑎𝑖𝑖 + 2𝑐𝑠𝑎𝑖𝑗 + 𝑐2𝑎𝑗𝑗 

𝑎𝑖𝑗
′ = 𝑎𝑗𝑖

′ = (𝑐2 − 𝑠2)𝑎𝑖𝑗 + 𝑐𝑠(𝑎𝑖𝑖 − 𝑎𝑗𝑗) 

 

After Givens rotation, aij
′  and aji

′  in Ak+1 should be eliminated to 0.  

𝑎𝑖𝑗
′ = 𝑎𝑗𝑖

′ = (𝑐2 − 𝑠2)𝑎𝑖𝑗 + 𝑐𝑠(𝑎𝑖𝑖 − 𝑎𝑗𝑗) = 0 

 

The value of sin and cos which are used for Givens rotation can be calculated with 

original elements in Ak 

𝑎𝑗𝑗 − 𝑎𝑖𝑖

𝑎𝑖𝑗
=

𝑐2 − 𝑠2

𝑐𝑠
=

1 − (
𝑠
𝑐)

2

𝑠
𝑐

=
(1 − 𝑡2)

𝑡
= 2𝑤      𝑖. 𝑒. 𝑡2 + 2𝑤𝑡 − 1 =  0 

First, there are some definitions for this process. 
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𝑡 = 𝑡𝑎𝑛𝜃 =
𝑠

𝑐
=

𝑠𝑖𝑛𝜃

𝑐𝑜𝑠𝜃
 

 𝑤 =
𝑎𝑗𝑗−𝑎𝑖𝑖

2𝑎𝑖𝑗
=

𝑐2−𝑠2

2𝑐𝑠
=

cos(2𝜃)

sin(2𝜃)
= cot (2𝜃) 

With these definitions, t can be calculated. t =  −w ± √w2 + 1, if w < 0, t is set to 

−w − √w2 + 1 , or t is −w + √w2 + 1  for precision. As a result, sinθ and cosθ 

are 

𝑠 = 𝑠𝑖𝑛𝜃 =
𝑡𝑎𝑛𝜃

√1 + tan2 𝜃
=

𝑡

√1 + 𝑡2
 

𝑐 = 𝑐𝑜𝑠𝜃 =
𝑡𝑎𝑛𝜃

√1 + tan2 𝜃
=

𝑡

√1 + 𝑡2
 

 

Finding the largest non-diagonal element in matrix can decide i and j. The element is 

called pivot. Jacobi method is similar to QR algorithm, it does the transformation 

repeatedly until it gets a final matrix. Eigenvalues are the diagonal elements in the final 

matrix. Also, eigenvectors can be calculated by Givens matrices. 

EVs = G1
T𝐺2

𝑇 …𝐺𝑛
𝑇 

 

Figure 1.1.4 The Process of Jacobi Eigenvalue Method 

    The process of Jacobi method, it needs to find a pivot for generating sin and cos 

for a Givens matrix for rotation. In finding pivot, it looks for largest non-diagonal 
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element, the indexes of the largest non-diagonal element would be the pair for Givens 

matrix. After gaining the Givens matrix, it is used for calculating new matrix and 

eigenvectors. Also, the eigenvalues are the diagonal elements in final matrix. The time 

complexity of Jacobi method is O(mn). In the loop of Jacobi method, it only affects 

two rows and columns each time. Also, matrices are symmetric. In terms of it only 

needs to calculate elements in two rows. As a result, the process of update pivots in 

rows can be done simultaneously. Moreover, just like QR algorithm, the calculation 

new matrix involves the elimination of non-diagonal elements and calculation of 

eigenvectors. The time complexity of finding largest pivot is O(number of rows), 

because there is an array which records the largest non-diagonal element of each row. 

    Figure 1.1.5 shown the loop for the Jacobi method. At the beginning of the loop, 

it finds the largest pivot element inside a matrix. With the largest element in a matrix, 

the loop calculates the value sin and cos for eliminating the element. After that, it can 

calculate new matrix and eigenvectors. Each iteration only eliminates one non-

diagonal element which is not similar to QR algorithm. Figure 1.1.6 shown how to 

compute the sin and cos in Jacobi method. The function Calc_Givens() gets element 

𝑎𝑖𝑖 , 𝑎𝑗𝑗  and 𝑎𝑖𝑗 at first. And, it calculates the value of sin and cos with equations that 

have been mentioned above. 

 

Figure 1.1.5 The Loop for The Jacobi Method 
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Figure 1.1.6 The Calculation of Sin and Cos for Jacobi method 

1.2 Resources and Techniques on FPGA 

    FPGA has different resources like Block RAM (BRAM), LUT (LookUp Table), DSP, FF 

(Flip-Flop) and URAM for simulating an ASIC. BRAM is internal block RAM inside FPGA, 

the transferring speed of BRAM is faster than DDR memory on board. LUT is ‘LookUp 

Table’ which is used for mechanisms like truth table. FF is ‘Flip-Flop’ which is used as a 

form of storage like storing results from LUT. LUT and FF are the basic module for FPGA 

to generate circuit. When FPGA performs float/double computation like addition, 

subtraction and multiplication, it utilizes DSP48 for computation. DSP48 is arithmetic 

logic unit (ALU) inside FPGA. These resources are used for simulating circuit on ASIC. 

There are some techniques which are useful for developing project on FPGA. 

1.2.1 Techniques for Implementing Code on FPGA 

The processes of developing programs on CPU and FPGA are different, some 

behavior which is normal on CPU, but it affects the performance on FPGA. For example, 

in C programming language, programmers can add ‘{0}’ after an declaimed array like 

‘int array[SIZE] = {0}’, however, it would make FPGA to do unnecessary initialization. 

Arrays on FPGA are put in BRAM, and the space of arrays would be set to zeros. So, 

there is no need to do zero initialization in FPGA. 

Furthermore, the data transferring speed of BRAM on FPGA is far faster than DDR 

RAM. If there is no need to compute large dataset, programmers can put datasets in 

BRAM. But, the size of BRAM is much smaller than DDR RAM, considering large 

datasets, DDR RAM should be used for those datasets. Also, programmers should 



 

11 
 

figure out an approach to decrease the time of accessing DDR memory like 

implementing cache mechanism with BRAM for decreasing the time of accessing DDR 

memory. If the number of data transfer is decreased by caching mechanism, the total 

latency is decreased as well. 

    In Vivado HLS tool, independent operations are executed at the same cycle. Like 

figure 1.2.1, the operations in functionA are independent, in synthesis process, HLS 

tool would make FPGA to execute them simultaneously. This is important concept for 

unrolling for loops which will be mentioned later in this section. Also, whenever FPGA 

allocates space in BRAM, the space will be set to zero, there is no need to reset the 

space with zeros again. 

 
Figure 1.2.1 Example of Independent Operation 

Moreover, HLS tool provides many useful pragmas [32] like pipeline, unroll and so 

on. Those pragmas can be used for different purposes such as loop optimization, 

kernel optimization, array optimization, pipeline and so on. The following content 

introduces the pragmas that are used for developing this project. 

HLS pipeline [24] is an important technique for designing project on FPGA. Figure 

1.2.2 shown that a loop can be done with pipeline when adding the pragma. Also, each 

iteration is executed after previous iteration with specific interval. 

 

Figure 1.2.2 Pipelining on FPGA [24] 

After doing pipeline in a for loop, the total cycle for a loop in func is decreased from 8 
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cycles to 4 cycles. And each iteration is executed after previous iteration with interval 

1 cycle. HLS pipeline is useful for burst reading/writing. Burst reading/writing means 

read/write data from/to DDR memory with less cycles. In order to make the interval 

as short as possible, programmers should try to remove dependency in loops. If there 

are dependencies inside loops, HLS tool will increase interval of pipeline to keep 

dependencies safe. 

    HLS unroll [25] is a pragma which unrolls for-loops. It is useful when the inter 

dependency is not exist inside a loop. If there is no interdependency in a loop, it means 

the loop can be pipelined with smallest interval 1 cycle. Also, by unrolling the loop, 

some iterations in the loop can be done at the same cycle. Figure 1.2.3 shown the 

example which combined pipeline and unroll. 

 

Figure 1.2.3 Example for Combining Pipeline and Unroll 

In the for-loop, the temp1 and temp2 are independent. By utilizing pipeline, the for-

loop will be done in pipeline. Also, the factor of HLS unroll is 2 which means every 2 

iterations will be done at the same cycle. As a result, this for-loop will take less cycles 

than a loop without unrolling. The default setting for unrolling a loop is all if there is 

no factor setting in HLS unroll pragma. However, for non-static loop, HLS is unable to 

unroll it. So, adding a factor is important for this type of loops. 

    HLS Loop_tripcount [26] is a pragma for estimating latency for loops, it doesn’t 

affect implementations. But it is helpful for developers to understand the latency and 

interval of each function in implementations on FPGA. 

    HLS dependency [30] is used for indicating the data dependency inside loops, by 

making the dependency clear it can help HLS tool to utilize shortest interval of pipeline. 

Also, if there is no dependency in loops, this pragma can be used for indicating by 

adding false in dependency pragma. 

In order to develop this project, it needs these techniques to convert C host codes 

to implementations on FPGA. 
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1.2.2 Fixed Type on FPGA 

In Vivado Design Suite User Guide [27] mentioned a datatype ap_fixed. The 

ap_fixed type can let users to decide how many bits for integer parts and how many 

bits for decimal part. 

 
Figure 1.2.4 Fixed Point Data Type [27] 

Take ap_fixed<16,8> as an example. 16 means it has 16 bits and 8 means which 

has 7 bits for the value before decimal point, 1 bit for sign and 8 bits for value after 

decimal point. So, the range of integer part is from -128 to 127. Also, the value after 

decimal point should larger than or equal to 0.00391 (calculated by 1/255). If I set 

0.003 to the fixed type, it would become zero. Also, if I set 0.005 to fixed type, it would 

be 0.00391 instead of 0.005 because 2/255 is about 0.00781. So, in practical, setting 

an adequate number of bits for ap_fixed type is important. However, in this project, it 

didn’t utilize this fixed type. This will be discussed in section 5.1. 

1.3 Aims 

    This project aims to design custom intellectual property (IP) [17] in FPGA to 

accelerate the process of finding eigenvalues and eigenvectors in order to determine 

the usability of FPGA technology in HPC environments. Moreover, this project focuses 

on finding eigenvalues and eigenvectors for real symmetric matrices in order to 

compare these two algorithms fairly. 

1.4 Data Requirement 

    This project needs a number of small matrices for preliminary test as we develop 

and test our implementation, and a number of large matrices for evaluation. The 

testing data sets were generated by programs, it is not related to any data in real world. 
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2. Related Work 

Aslan [9] proposed an implementation based on the QR algorithm and Givens 

rotation. It utilized COordinate Rotation DIgital Computer (CORDIC) [19] and fixed 

point in order to achieve the best clock on FPGA. CORDIC is also known as Volder's 

algorithm. CORDIC is an algorithm for computing hyperbolic and trigonometric 

functions in easier on hardware like FPGA. This proposal focuses on 4x4 real symmetric 

matrices. This project didn’t apply CORDIC and fixed type. F. Rotella [16] introduced 

that the process of QR factorization can be done in parallel. The approach is an 

extension of Household transformation [20]. As a result, QR factorization can be 

calculate with many blocks at the same time. Lin [10] proposed an implementation 

which is based on Approximate Jacobi method [21] for generalized symmetric matrices. 

Lin implemented Approximate Jacobi method on FPGA for general symmetric matrices, 

also, this paper proposed a special algorithm ‘Algebraic Method’ for 3x3 symmetric 

matrices. Moreover, this paper relied on CORDIC to get the value of trigonometric 

functions. For evaluation, this paper didn’t provide exact execution time but formula 

for calculating execution time. It is impossible to compare the result of this project 

with the result of Lin. Unfortunately, the time of development for this project is not 

enough for implementing other approaches for comparison. fBLAS [28] is an open-

sourced implementation for HLS [13] tools to develop Basic Linear Algebra 

Subprograms (BLAS) [29] on FPGA. It aims to make the process of developing and 

porting on FPGA easier on FPGA. 
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3. Implementation 

    This project aims to develop code on different platforms. PYNQ Z2 [11] is used for 

doing proof of concept. And code in PYNQ is ported to Xilinx Alveo U200 [31]  

platform. In section 3.1, it introduces the specification of platforms. The following 

subsections describe how to develop this project on different platforms. For 

implementations on PYNQ and Alveo, they utilized single-precision data type for 

matrices. 

3.1 Platforms 

PYNQ Z2 [11] is a development board which has a System on a Chip (SoC) [12] on 

it. The SoC involves 650 MHz dual-core ARM Cortex A9 and FPGA core which is 

equivalent to Artix-7 FPGA. It has 630 KB block RAM, 220 DSP slice, 106400 FFs and 

53200 LUTs. It doesn’t have URAM. Moreover, host part and FPGA part sharing the 

same DDR memory. 

    For the implementation for HPC environment, “livfpga” is an HPC environment at 

the University of Liverpool. It has one Xilinx Alveo U200 [31] card and a Xeon E5 649 

which has 2.53 GHz clock. U200 has 7947 KB BRAM, 5867 DSP slice, 1831K FFs and 

892K LUTs. Also, U200 has default data clock 300 MHz and default kernel clock 500 

MHz. Also, it has 4 DDR banks, each back has 4 GB. U200 can be installed on PCI-e 3.0 

and PCI-e 2.0. 

3.2 Implementation on PYNQ Z2 

    PYNQ contains Python APIs for users to control FPGA easily. For FPGA part, users 

need Vivado HLS [13] to design their own IPs [17] for FPGA. After designing IPs, those 

IPs are utilized for generate overlays in Vivado Design Suite [14]. Vivado HLS supports 

High-Level Synthesis in terms of users can design hardware logic for FPGA with high 

level language like C/C++ or OpenCL. The definitions of HLS interfaces have a bundled 

control port for setting parameters to FPGA, and some bundled memory ports for 

accessing DDR memory. If users use C/C++ for developing, at beginning of top function, 

users need to define ports with pragmas. For example, the definition of ports for the 

QR algorithm and Jacobi method is figure 3.2.1. 
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Figure 3.2.1 The Definitions of Ports in Vivado HLS 

The IP module in Vivado Design Suite would look like Figure 3.2.2. It has an 

s_axi_control port for host part and some m_axi_gmem* ports for accessing DDR 

memory. 

 
Figure 3.2.2 IP of QR Algorithm in Vivado Design Suite 

  

Figure 3.2.3.1 Resource Utilization of QR 
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Figure 3.2.3.2 Resource Utilization of Jacobi 

Those s_axilite ports are used for setting addresses or values, and m_axi ports are used 

for accessing DDR memory on board. Those m_axi ports are able to be bundled with 

different memory bus which enables FPGA to access different part of DDR memory at 

the same time like in_matrix is bundled with gmem and out_matrices are bundled with 

gmem1. Choosing different DDR bank for each port will be discussed in later section.  

PYNQ has an AXI_ACP port on it which enables ARM core and FPGA core to share the 

same DDR memory. After building IPs, Vivado HLS generate report like figure 3.2.3.1 

and figure 3.2.3.2 which contains usage of resources like BRAM, DSP, FF, LUT and URAM.  

     

    After IPs are created, users can start to generate overlay in Vivado Design Suite. 

The overlay in Vivado Design Suite is Figure 3.2.4. 

 

Figure 3.2.4 The overlay in Vivado Design Suite 

    IPs are connected by interconnectors, and those interconnectors are connected 

to ZYNQ core which is ARM core. After finishing the overlay, it can be used for creating 

bit stream files. Bit stream file is loaded by Python APIs which means users can write 

host code in Python and utilize those APIs to control FPGA part. Firstly, users can write 

a driver in Python host code like Figure 3.2.5. 
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Figure 3.2.5 Part of Driver in Host Code for QR Algorithm 

The register addresses in setters and readers are defined in a header file when 

generated IPs in Vivado HLS. A driver needs to set correct addresses in order to control 

IP in FPGA part properly. 
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Figure 3.2.6 Register Addresses of Each Port 

By reading 0x00, users can know the status of FPGA. There are 5 different status for 

FPGA. The status ap_idle means FPGA is idle now, users can write ap_start which 

makes FPGA start to work. After job is done by FPGA, it sets ap_done to status. 

 

Figure 3.2.7 Status for FPGA 

 
Figure 3.2.8 Interaction between Host and FPGA 

For example, in figure 3.2.8, it checks whether FPGA is idle. If it is idle, it sets addresses 

and dimension to FPGA. After setting those parameters, it writes ap_start to FPGA and 

wait for ap_done. The ap_done signal will be unset once host read status. The steps of 

executing bit stream files on PYNQ are list below. 

1. Host part allocates input and output buffers 

2. Host sets the dimension of matrix, physical addresses of space to FPGA through 

control ports. FPGA can access the same DDR RAM by AXI_ACP port at host. 

3. Host write ap_start signal to FPGA 

4. FPGA processes data in input matrix and put results to output space and sends 

ap_done signal to host. 
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5. Host read data from output buffer 

3.3 Implementation on Xilinx Alveo 

    In order to develop projects for Alveo, SDAccel [15] is needed for this purpose. 

SDAccel is an IDE which contains Vivado Design Suite and Vivado HLS in it. SDAccel 

supports C/C++ for host part, and C/C++, OpenCL and RTL for FPGA part. Alveo cards 

are connect with Host by PCI Express interface. There are different kernels which were 

implemented on Alveo. They are Jacobi method with DDR RAM and BRAM, and the QR 

algorithm with DDR RAM and BRAM. 

 

Figure 3.3.1 The Architecture of SDAccel [15] 

    There are three different build mode in SDAccel. They are Emulation-SW, 

Emulation-HW and System respectively. Emulation-SW enables users to check if their 

code is buildable. Also, users can debug their code within this mode. Emulation-HW 

verifies hardware design that is executed in FPGA and generates reports. Finally, in 

order to build bit stream files, System build is required. In SDAccel, users don’t need 

to worry how to generate overlays like utilizing Vivado Design Suite when developing 

project on PYNQ. SDAccel handles it for users, but users have to follow the restriction 

of defining ports. IPs can only have one bundled control port, and an amount of 
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memory ports or streaming ports. In project settings of SDAccel, users need to create 

binary containers and add top functions into them. 

    A bitstream file needs at least one kernel in it. Like figure 3.3.2, there are two 

bitstream files qr_binary and jcb_binary. Both has an individual kernel QR_Symm and 

JCB_Symm. QR_Symm and JCB_Symm are called top functions. 

 

Figure 3.3.2 Binary Containers in Project Setting Page 

 

Figure 3.3.3 Selecting Different DDR Banks for Ports 

SDAccel enables FPGA to assign different DDR banks for each memory ports. Like 

the memory ports in_matrix, out_matrix1 and out_matrix2. They can be assigned to 

DDR[0], DDR[1] and DDR[2] respectively. By assigning DDR banks to each memory port, 

it makes FPGA read/write DDR memory with those memory ports simultaneously. 

The resource usage for kernels on U200 are listed below. 
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Figure 3.3.4.1 Resource Usage of Jacobi Method with DDR RAM on FPGA 

 

Figure 3.3.4.2 Resource Usage of Jacobi Method with BRAM on FPGA 
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Figure 3.3.4.3 Resource Usage of QR Algorithm with DDR RAM on FPGA 

 
Figure 3.3.4.4 Resource Usage of QR Algorithm with BRAM on FPGA 

The usage of resources on U200 were similar to PYNQ Z2 except BRAM. Because 

U200 has more space of BRAM than PYNQ, so the definition of size in implementations 

on U200 was larger than PYNQ. Also, the implementations with BRAM utilized more 

BRAM resources than the implementations with DDR RAM. 

Moreover, SDAccel would change the clock for bitstream files if the bitstream 

cannot utilize the default clock on Alveo. In Xilinx devices, a LUT is coupled with a 

register. Users can connect output to the LUT to a register, or they can connect output 

to another LUT in order to make a bigger logic circuit. Whenever users add a LUT in 

the LUT chain, it increases the delay of the route. In terms of it cannot meet the target 

clock 300 MHz. 

After finishing these steps, users can build projects in different emulation. There 

are some optional steps that can be added into linkers. 

 

Figure 3.3.5 Optional Compiler Options for XOCC 

 

Figure 3.3.6 Optional Linker Options for XOCC 

By adding ‘—profile_kernel data:all:all:all’, ‘—profile_kernel exec:all:all’ and ‘—

profile_kernel stall:all:all:all’ when linking bit stream files, host program is able to 

generate analysis files after executing bit stream files. For profiling stall information, 

users have to add ‘—profile_kernel stall:all:all:all’ in time of compilation. These options 

won’t affect the running time of FPGA kernel significantly, but host program needs 
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more time to terminate at the end. For evaluation, it only recorded the execution time 

of FPGA kernels rather than whole running time of host program. 

 

The steps for executing bit stream files on Alveo are listed below. 

1. Host reads bit stream file 

2. Host initials FPGA with bit stream which is read before 

3. Host part allocates input and output buffers 

4. Host creates buffers in DDR RAM of FPGA, and it copies input data to the RAM of 

FPGA 

5. FPGA processes data from input buffer and put results to output buffer 

6. Host reads data from output buffers in FPGA 
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4. Result and Evaluation 

In this chapter, we discuss the performance (in terms of time and accuracy) of our 

FPGA implementations of the two methods previously described to determine 

eigenvalues of real symmetric matrices. The testing platforms were PYNQ Z2 and 

livfpga that were described before. For both CPU only and FPGA, the optimization level 

is 0 in evaluation which for preventing optimization of compilers. 

In section 4.1, it compares of CPU only and FPGA on PYNQ Z2. The following 

section compares them on livfpga. Section 4.3 compares the deviation of eigenvalue 

among Numpy [22] and both implementation on FPGA. 

The matrices which were used for C host and FPGA were the same. Test data was 

generated by programs. In order to create real symmetric matrix with different sizes, 

the form of test matrix is: 

[
 
 
 
 
1 1 1 ⋯ 1
1
1
⋮
1

2
2
⋮
2

2
3
⋮
3

⋯ 2
⋯ 3
⋱ ⋮
⋯ 𝑛]

 
 
 
 

 

The hypothesis is that the execution time is increased when the size of matrices is 

increased as well. Also, this trend is proved in later section. So, for evaluation, it used 

this form of real symmetric matrices to do experiments. 

    C programs and bitstream files for both algorithms were compiled with 

optimization level zero which prevents optimization from compilers. Moreover, the 

execution time for C programs was generated by ‘clock_gettime()’ C function in Linux. 

In order to compare the time of calculation on CPU and FPGA, it only recorded the 

starting and ending time of calculation of QR and Jacobi algorithms. The deviation of 

execution time on CPU was larger than FPGA. C programs were run 10 times with each 

specific size of a matrix, and the execution time was the smallest among them. For 

FPGA, the execution time didn’t involve the data transfer between Host and DDR 

memory on FPGA because time of transferring data between host and FPGA usually is 

far smaller than execution time on FPGA. But, the execution time on FPGA included 

data transfer between kernel and DDR memory on FPGA. The deviation of execution 

time on FPGA between each execution was small, it wouldn’t be larger than 10ms by 

observation. The bitstreams were only executed once with each size. 

4.1 Execution Time on PYNQ Z2 

    The evaluation on PYNQ Z2 is comparing the QR algorithm and the Jacobi method 
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with different version of code. For host only part, both algorithms were written in C 

programming language, compiled with GNU Gcc compiler [18] and executed on ARM 

core. For FPGA part, it utilized python on ARM core and C for FPGA part. Because 

Vivado HLS supports high-level language like C for designing IPs for FPGA. 

 

Size 

QR (Sec) 

C host only Python + FPGA Iterations 

10 0.0012222 0.0011298 14 

20 0.0109492 0.0057256 33 

30 0.0312661 0.0144295 42 

40 0.0723673 0.030241 54 

50 0.1398536 0.0563406 68 

60 0.2470352 0.0963079 81 

70 0.5965278 0.2433249 540 

80 0.763963 0.2905871 248 

90 1.0682066 0.4012138 287 

100 1.5640746 0.5840399 422 

Table 4.1.1 Execution Time of QR on PYNQ Z2 

    The execution time of QR on PYNQ was faster than ARM CPU. Also, for a given 

matrix, the numbers of iterations were the same for the two different implementations 

of QR algorithms. In terms of the eigenvalues and eigenvectors which were calculated 

by both implementation of the QR algorithm were the same with given matrices. 

Figure 4.1.1 shows that the execution time of QR algorithm on FPGA part was faster 

than a single ARM core. These execution times didn’t involve overhead of copying data 

from host to FPGA and vice versa. The trend of QR algorithm in figure 4.1 looks like 

O(n2). 
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Figure 4.1.1 Execution Time of QR Algorithm on PYNQ Z2 

    For the Jacobi method, execution time was listed in table 4.1.2. The execution 

time of FPGA was still faster than CPU host only. Also, the numbers of iterations were 

the same among both different implementations of the Jacobi method with given 

matrices. Due to time complexity of Jacobi method is O(mn), the execution time was 

increased linearly with different sizes of matrices. The number of iterations of Jacobi 

was higher than QR algorithm because non-diagonal elements in QR were eliminated 

in each loop. 

Size 

Jacobi (Sec) 

C host only Python + FPGA Iterations 

10 0.0012748 0.0007925 85 

20 0.0057706 0.0021672 219 

30 0.0122985 0.0039274 329 

40 0.0225231 0.006742 460 

50 0.0293996 0.0084612 484 

60 0.0358025 0.0102157 493 

70 0.0499564 0.0132973 597 

80 0.070121 0.0186138 723 

90 0.0837204 0.0220417 775 

100 0.0858889 0.0221593 719 

Table 4.1.2 Execution Time of Jacobi Method on PYNQ Z2 
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Figure 4.1.2 Execution Time of Jacobi Method on PYNQ Z2 

4.2 Execution Time on Alveo Card(s) 

    This section is about the result and evaluation on HPC environment in terms of 

livfpga. Unlike CPU, FPGA has different memory resources like DDR RAM and BRAM. 

The transfer speed of BRAM is far faster than DDR RAM. In order to compare the 

difference between DDR RAM and BRAM. In section 4.2, it compares implementations 

with DDR RAM and BRAM on FPGA. Section 4.2.1 compares the implementation of 

FPGA with DDR memory and CPU. Section 4.2.2 compares the implementation of FPGA 

with BRAM and CPU. Finally, section 4.2.3 compares the execution time between 

executing kernels individually and simultaneously. 

4.2.1 Execution Time with DDR Memory on FPGA 

    In this section is about the comparison for both algorithms on different platforms. 

In order to store large matrices for FPGA, the implementation for Alveo card utilized 

DDR memory on FPGA. The clocks of both implementations are listed in table 4.2.1. 

The timing paths in the implementation of Jacobi method were unable to meet the 

requirement of using maximum data clock, so SDAccel changed the data clock from 

300 MHz to 242 MHz. The kernel time includes the time of scheduling and executing 

for kernel function. The computer units (CU) time means the execution time of 

computer units on FPGA. The execution time of FPGA involve data transfer between 

kernel and DDR memory on FPGA but no data transfer among host and FPGA. 
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Data Clock 300MHz 242MHz 

Kernel Clock 500MHz 500MHz 

Table 4.2.1 Clocks for Both Implementations 

Size 

QR algorithm (Sec) 

C host only 
Iterations of 

CPU 

C++ + FPGA 

Kernel Time 

C++ + FPGA CU 

Time 

Iterations 

of FPGA 

10 0.0001047 14 0.0009456 0.0004676 14 

50 0.010818 68 0.0342894 0.0338184 68 

100 0.1096975 422 0.359982 0.359504 422 

200 0.6255859 268 1.92501 1.92461 268 

300 2.7422642 989 8.43784 8.43774 989 

400 4.6203722 529 14.3208 14.3208 529 

500 8.9707666 660 29.2692 29.2701 660 

600 24.4145338 2260 67.2841 67.2868 2260 

700 33.2559055 1930 102.833 102.837 1930 

800 43.8822578 1084 140.541 140.548 1084 

900 80.9489243 8139 238.542 238.552 8139 

1000 89.4663945 1504 247.72 247.731 1504 

Table 4.2.2 Comparison of Execution Time between FPGA and CPU with OR 

    In table 4.2.2, it shown the execution time of CPU only and FPGA. The numbers 

of iterations of CPU and FPGA were the same with sizes of matrices from 10 to 1000. 

It meant the eigenvalues of CPU were the same as FPGA when the numbers of 

iterations were the same. Figure 4.3 shown the comparison between time of CPU only 

and CU time on FPGA. 

 
Figure 4.2.1 Comparison between Time of CPU and CU time on FPGA 
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The graphs of CPU and FPGA were similar, but the QR algorithm on FPGA was far slower 

than CPU only. 

Size 

Jacobi method (Sec) 

C host only 
Iterations of 

CPU 

C++ + FPGA 

Kernel Time 

C++ + FPGA CU 

Time 

Iterations 

of FPGA 

10 0.0002369 85 0.0007678 0.0003049 85 

50 0.0032626 484 0.005431 0.0049479 484 

100 0.0090677 719 0.0127531 0.012228 719 

200 0.0246919 1070 0.0348528 0.0343852 1070 

300 0.0541866 1534 0.0698871 0.0694075 1534 

400 0.0897544 1912 0.110724 0.110151 1912 

500 0.1487879 2235 0.163559 0.163023 2235 

600 0.2155234 3020 0.253849 0.253329 3020 

700 0.2667646 3154 0.311752 0.311271 3154 

800 0.3147876 3145 0.402687 0.402188 3145 

900 0.3909246 3485 0.445404 0.444913 3485 

1000 0.4830077 3832 0.541875 0.5413 3832 

2000 1.4854332 5449 1.57339 1.57292 5449 

3000 3.0086925 7446 3.22777 3.22742 7446 

4000 4.3502644 7869 5.44801 5.44774 7869 

5000 5.9886706 8794 6.63137 6.63113 8794 

6000 7.1836527 8522 8.25105 8.25094 8522 

7000 9.961239 9906 11.2066 11.2066 9906 

8000 13.3987016 11184 23.4107 23.4112 11184 

9000 16.7333442 12568 18.3196 18.3199 12568 

10000 11.7590399 7021 14.403 14.4031 7021 

Table 4.2.3 Comparison of Execution Time between FPGA and CPU with Jacobi 
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Figure 4.2.2 Comparison between Time of CPU and CU time on FPGA 

In table 4.2.3, it shown the execution time on both CPU and FPGA, and the number of 

iterations. The implementation of the Jacobi method on FPGA was closer to CPU only 

implementation than QR implementation on FPGA. The time drop from 9000 to 10000 

was due to the declination of the number of iterations when size was 10000. Moreover, 

the execution time at 8000 of FPGA was much slower than CPU. We explored this 

unexpected “peak” in the graph, by looking at matrix sizes from 7100 to 9000 in more 

detail. 

In table A.3 (in Appendix), it shown the time of data transfer on different memory 

ports, and the summation of transferring time among all memory port. The variable 

in_matrix was the input matrix of kernel, and out_matrix1 and out_matrix2 were used 

for storing eigenvalues and eigenvectors respectively. Values in table A.3 was 

calculated by multiplying number of data transfer and average latency together. 

SDAccel provides profiling summary which include the number of transfer (table A.2 

in Appendix) and average latency (ns) (table A.1 in Appendix) between kernel and DDR 

memory on FPGA, by multiplying them, the total time of transfer of each memory port 

is calculated. Table A.4 (in Appendix) shown the execution time of Jacobi on FPGA with 

sizes from 7100 to 9000. 

    Comparing the number of iterations in table A.4 and the number of data transfer 

in table A.2. It shown the relation between number of iteration and the number of 

data transmission between DDR RAM and kernel. The number of iterations was related 

to the number of data transfer of each memory port. Because whenever calculations 

like QR factorization in QR algorithm or Givens rotation in Jacobi method, the 

calculated elements would be written back to memory and read new elements from 

DDR memory. However, the number of iterations is not the only factor which affects 

execution time on FPGA. 
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Figure 4.2.3 Relation Between Execution Time and Total Transfer Latency 

The comparison in figure 4.2.3 which compares the total memory latency and 

execution time together. Also, it shown the relation between total memory latency 

and execution time on FPGA. The average latency of data transfer between kernel and 

DDR RAM is another factor for affecting execution time. There are some possible 

reasons that cause the fluctuation of the average latency of data transfer such as AXI 

burst size, burst length and reading/writing DDR memory concurrently. Adding time of 

transferring data of each memory port is not the correct total time for data 

transmission between kernel and DDR memory because some data transmission was 

done simultaneously, it is a good measure point. 

    The trend of execution time and the number of iterations is that both execution 

time and number of iterations are increased when the size of matrices is increased. 

Doing an experiment with more sizes of matrices between 7000 to 9000 can prove this 

trend exist. By looking at figure 4.2.4, it shown the slope of the number of iterations 

was very similar to the slope of execution time. In most time, the execution time was 

related to the number of iterations. For the other fluctuations, they were very possibly 

affected by the average data latency which is discussed previously. 
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Figure 4.2.4 The Trend of Execution Time and Number of Iterations 

4.2.2 Execution Time with BRAM 

    Putting data in BRAM instead of DDR RAM on-board can eliminate the overhead 

of data transfer between kernel and DDR RAM on FPGA. The data transfer between 

kernel and DDR RAM on FPGA are much slower than BRAM. If users utilize BRAM 

instead of DDR RAM for their implementation, they can achieve better performance. 

However, the size of BRAM on FPGA is much smaller than DDR RAM. On Alveo U200, 

it only has 7947 KB for BRAM. So, in this section, the size of matrices will be set from 

10 to 500. The Jacobi method was used for the evaluation in this section. 

Size 

Jacobi Execution Time (Sec) 

C host only 
FPGA with DDR CU 

Time 

FPGA with BRAM 

CU Time 
Iterations 

10 0.0001324 0.0003049 0.0002585 85 

50 0.0031943 0.0049479 0.0027906 484 

100 0.0086072 0.012228 0.0062867 719 

150 0.0194226 0.0227997 0.0107087 923 

200 0.0217383 0.0343852 0.0154517 1070 

250 0.0441193 0.046872 0.0214045 1230 

300 0.0538879 0.0694075 0.0309276 1534 

350 0.0783253 0.0977631 0.0432183 1889 

400 0.0839225 0.110151 0.0495305 1912 

450 0.1362884 0.196443 0.0635534 2228 

500 0.1540189 0.163023 0.0702775 2235 
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Table 4.2.4 Execution Time of Jacobi on CPU and FPGA with BRAM 

By looking at table 4.2.4 and figure 4.2.5, they shown the execution time of FPGA with 

BRAM was faster than CPU only after 10. Also, it faster than the implementation with 

DDR memory on FPGA as well. By getting rid of the overhead of transferring data 

between kernel and DDR RAM, the execution time of the Jacobi implementation would 

be faster than CPU only. Because the latency of transferring data from/to BRAM is 

smaller than DDR RAM. 

 
Figure 4.2.5 Execution Time of Jacobi with Different Settings 

    Moreover, the QR algorithm with BRAM was evaluated. Table 4.2.5 shown the 

execution time of the QR algorithm with BRAM. 

Size 

QR Execution Time (Sec) 

C host only 
FPGA with DDR CU 

Time 

FPGA with BRAM CU 

Time 
Iterations 

10 0.0001047 0.0004676 0.0002059 14 

50 0.0097629 0.0338184 0.0088463 68 

100 0.1096975 0.359504 0.0770608 422 

150 0.2540024 0.812629 0.156728 200 

200 0.6255859 1.92461 0.356021 268 

250 1.6047293 4.82088 0.864026 652 

300 2.7422642 8.43774 1.49405 989 

350 3.1379971 9.72959 1.68028 462 

400 4.6094529 14.3208 2.46863 529 

450 6.4912594 31.4502 3.49162 595 

500 8.9707666 29.2701 4.80424 660 

Table 4.2.5 Execution Time of QR Algorithm with BRAM 
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Figure 4.2.6 Execution Time of QR with Different Settings 

By looking at figure 4.2.6, it shown the implementation of QR algorithm on FPGA with 

BRAM faster than CPU. Still QR implementation on FPGA with DDR RAM was the 

slowest one. According to results in this section, elimination of the overhead of 

transferring data from/to DDR RAM can increase the performance on FPGA. If 

programmers want to place large dataset in DDR memory on board, they should 

consider how to decrease the number of transferring data from/to DDR RAM. Maybe 

users can implement a cache mechanism for decreasing time of data transfer among 

kernel and DDR RAM. 

4.2.3 Executing Kernels Simultaneously 

    Programmers can put multiple kernels in a bitstream file and execute those 

kernels concurrently. In this section, we evaluate the performance of a bitstream that 

contains kernels of Jacobi method both using DDRAM (as per section 4.2.1) and using 

BRAM (as per section 4.2.2). We compare the execution time of this combined 

bitstream to the sum of the times for running each kernel sequentially. The purpose 

of this section is to determine when run all kernels concurrently whether the execution 

time would be similar to execute kernels individually.  

Because it compared the kernels in section 4.2.1 and 4.2.2, the sizes of matrices 

were set from 10 to 500. Table 4.2.6 shown the clock for each bit stream files for the 

evaluation in this section. The bitstream file for Jacobi with DDR RAM is 240 MHz, 

which is the same as section 4.2.1. For Jacobi with BRAM in section 4.2.2 is 180 MHz. 

And, the bitstream file which contains all kernels is 171 MHz. 
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Data Clock of bitstream files (MHz) 

JAC with DDR JAC with BRAM JAC with DDR and BRAM 

240 180 171 

Table 4.2.6 Data Clocks of Each Bitstream Files 

 
Figure 4.2.7 Comparison of Execution Time among Bitstreams 

    Looking at figure 4.2.7, it shown that the execution time among those bitstreams 

were similar. Kernels with BRAM were almost the same to each other because the 

difference of both clocks was small. On the other hand, the difference of clocks 

between Jacobi with DDR was about 70 MHz, so the execution time of running kernels 

together would be slower than executing individually. However, if all the clock were 

the same, they should have the same execution time. This is an advantage for FPGA, it 

can execute multiple kernels for multiple matrices simultaneously without affecting 

the performance. A CPU can only deal with matrices one-by-one.  

Figure 4.2.8 shown the execution time on CPU and FPGA. Both calculated a 

specific matrix and a matrix which has 500 dimensions in one execution. Kernels were 

faster than host when the sizes were set from 500 to 1000, the execution time of the 

matrix with 500 dimensions were in involved in the execution time of sizes of matrix 

on FPGA. However, host needed to calculate both matrices one-by-one. 

The purpose of this experiment aims to prove kernels can be executed for 

matrices simultaneously. And, it shown the running time of a bitstream with multiple 

kernels is the running time of slowest kernel inside the bitstream. However, in practical, 

a bitstream should involve kernels that are the same to and handle different matrices 

simultaneously. 
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Figure 4.2.8 Execution Time of Host and FPGA with Two Kernels 

4.3 Numpy VS Implementations on FPGA 

    In this section, it compared the deviation of eigenvalues which were generated 

by both implementations with eigenvalues from Numpy [22]. Numpy is a 

mathematical library in Python for calculating matrices. The sizes of matrices were 

from 10 to 100 in this section. The eigenvalues from Numpy may not be the correct 

answer for matrices in evaluation, but it can be used a comparison between both 

implementations in this project and other implementation from others. This 

comparison was done on PYNQ Z2. Because PYNQ Z2 provides Python API for 

controlling the FPGA part, and Numpy is a mathematic library for Python as well. By 

executing both implementations and Numpy with Python, they can be compared fairly. 

Size 
Eigenvalue Deviation 

Numpy QR QR-Numpy QR Error Rate JCB JCB-Numpy JCB Error Rate 

10 55 55.000034 3.4E-05 6.18182E-05 55.000049 4.9E-05 8.90909E-05 

20 210 210.000139 0.000139 6.61905E-05 210.000507 0.00051 0.000241429 

30 465 465.000277 0.000277 5.95699E-05 465.00115 0.00115 0.000247312 

40 820 820.00065 0.00065 7.92683E-05 820.002266 0.00227 0.000276341 

50 1275 1275.001075 0.001075 8.43137E-05 1275.005331 0.00533 0.000418118 

60 1830 1830.00174 0.00174 9.5082E-05 1830.00608 0.00608 0.00033224 

70 2485 2485.002306 0.002306 9.27968E-05 2485.009472 0.00947 0.000381167 

80 3240 3240.001816 0.001816 5.60494E-05 3240.014629 0.01463 0.000451512 

90 4095 4095.003243 0.003243 7.91941E-05 4095.019048 0.01905 0.000465153 

100 5050 5050.004902 0.004902 9.70693E-05 5050.024932 0.02493 0.000493703 

Table 4.3.1 Deviation among Numpy and Both Implementations 

According to table 4.3.1, it shown the summations of absolute eigenvalues from 
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the QR algorithm, Jacobi method and Numpy. Also, table 4.3.1 lists the difference of 

total absolute eigenvalues between Numpy and the QR algorithm, and the difference 

of total absolute eigenvalues between Numpy and Jacobi method. The error rates of 

both implementations were far smaller than 1%. 

    On the other hand, the comparison of execution time of Numpy and both 

implementation with DDR RAM and BRAM on PYNQ. 

 
Figure 4.3.1 Comparing Running Time of Numpy and QR with DDR RAM and BRAM 

 
Figure 4.3.2 Comparing Time of Numpy and Jacobi with DDR RAM and BRAM 

The execution time of Numpy was faster than QR algorithm with DDR RAM on PYNQ 

Z2 and similar to QR algorithm with BRAM. But it was much slower than Jacobi method 

no matter with DDR RAM or BRAM on PYNQ. 
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5. Discussion 

    In this chapter, I want to discuss some points that I had learnt in this project. This 

section aims to provide some ideas about improving the performance of both 

implementations on FPGA in future. In section 5.1, it discusses different data type for 

FPGAs. In section 5.2, it describes some learning points. Also, it discusses some 

professional issues at the last section. 

5.1 Discussion of Data Type on FPGA 

In this project, I chose to use single precision data type in terms of float for 

matrices. However, if float is replaced by double, the utilization of resource will exceed 

the resource on PYNQ. Figure 5.1.1 and 5.1.2 are the usage of resource of Jacobi 

method with DDR RAM on PYNQ. The utilization of DSP48E and LUTs was increased 

significantly with double precision data type. Take a single instruction as an example, 

for doing float addition/subtraction, it cost 2 DSP48 slices. For double 

addition/subtraction, it cost 3 DSP48 slices. For multiplication with float and double, it 

cost 3 DSP48 slices and 11 DSP48 slices respectively. However, for division and square 

root, they don’t utilize DSP48 slices but LUTs and FFs. By looking the whole algorithm, 

the usages of DSP48E were 89 for float and 235 for double respectively. Also, the 

usages of LUTs were 39634 for float and 65324 for double. 

 

Figure 5.1.1 The Float Usage of Jacobi with DDR on PYNQ 
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Figure 5.1.2 The Double Usage of Jacobi with DDR on PYNQ 

On the other hand, ap_fixed type had been considered before, however, it didn’t 

provide better performance on cycles of functions than float type. For example, the 

function for calculating sin and cos for Givens rotation took 83 cycles with float type, 

if I changed it from float to ap_fixed, it took more cycles. About the precision for 

implementations, I have explained the mechanism of ap_fixed type in section 1.2.2. 

However, it didn’t work in implementations of the QR algorithm and Jacobi method. 

I’ve tried to utilize ap_fixed in both implementations on PYNQ and SDAccel. Both 

implementations return zeros on PYNQ and crushed when emulating them with 

sw_emu mode on Alveo. This situation was caused by sqrt function in hls_math.h, 

because the sqrt function returned zero after calculation. By converting ap_fixed to 

float before calling sqrt function can fixed this problem. Even though this problem is 

fixed, the eigenvalues and eigenvectors returned by both implementations were 

wrong with ap_fixed type. 

5.2 Learning Points 

    I learnt how to implement projects on FPGA in this project. Familiarizing Vivado 

tools is the first step. Vivado HLS enables programmers to use high-level language to 

develop project on FPGA. However, there are some points that is not similar to develop 

program on x86 machine. For example, the initialization of x86 need to be done by C 

program itself, because allocated space might contain garbage values. For FPGA, the 

initialization in BRAM would be set to zeros automatically, on other words, 

programmers don’t need to reset those arrays again. Moreover, programmers tend to 

remove redundant code in implementations in order to achieve better performance 

or readability of code. But redundant code for FPGA could improve the performance 

on FPGA which is discussed in section 1.2.1. By decreasing time of accessing DDR RAM 

on FPGA can improve the performance on FPGA as well. If programmers need to 
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implement project for large datasets on FPGA, they need to consider some approaches 

to decrease the time of accessing DDR memory. Furthermore, each instruction in code 

consumes resources on FPGA, we need to make sure the usage of resources doesn’t 

exceed the amount of resources on FPGA board. After finishing code on Vivado HLS, it 

can generate an IP for generating overlays. 

    Vivado Design Suite is a tool for creating overlays for FPGA board such as PYNQ 

Z2. By using this tool, I understood how to create overlays for the FPGA part on PYNQ 

Z2. ARM core and FPGA core are connected by many AXI interfaces, users need to 

setup those interfaces for their requirements. For example, I set an AXI_ACP port and 

AXI_GP port for accessing memory and setting parameters on ARM core respectively. 

However, it is not enough for transmitting data from/to FPGA core by setting ports on 

ARM core. It needs other AXI interconnector to achieve this goal. By utilizing AXI 

interconnectors, ports on IPs can connect to ARM core. And, Vivado design suite can 

generate bitstreams when overlays are done. 

    In order to implement project on FPGA card in HPC environment, SDAccel is a tool 

for this purpose. SDAccel is more complicated than Vivado HLS and Vivado Design Suite. 

It contains host part and FPGA part. FPGA part is similar to the process of Vivado HLS 

tool, but host part is different. In SDAccel, users can set different DDR banks for 

memory ports. Also, adding options for profiling is possible for projects. Moreover, 

SDAccel could change the clock speed for bitstreams because of the design of 

bitstreams which is discussed in section 3.3. Also, the latency of data transfer between 

kernels and DDR RAM on FPGA can affect performance on FPGA significantly. There 

are some reasons that the average latency of data transfer is increased such as AXI 

burst size, burst length and reading/writing DDR memory concurrently. 

    In summary, I am familiar with using Xilinx tools to develop projects on Xilinx FPGA 

board. Also, I understood some techniques of writing code on FPGA like using pragmas 

to make operations be executed simultaneously. Moreover, I learnt the reason that 

affects data clock of implementations, and the reason which impacts the performance 

on FPGA when utilizing DDR memory to store dataset. 

5.3 Professional Issues 

According to BCS code of conduct [23], there are some points which are related 

to development of projects. This section aims to describe the relation of this project 

and BCS code of conduct. 

 

⚫ Public Interest 

This project aims to provide an idea about solving eigenvalues and eigenvectors 
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with FPGA on HPC environments. Which is useful in fields like machine learning and 

computer vision. Individuals can apply this idea if they have FPGA devices and they 

want to accelerate the process of solving eigenvalues and eigenvectors. 

 

⚫ Professional Competence and Integrity 

During the development of this project, I learnt necessary knowledge in order to 

develop this project. Also, I utilized skills that I knew to implement programs and 

bitstreams for different FPGA platforms. 

 

⚫ Duty to Relevant Authority 

The test dataset in this project is generated by programs, it is not related to any 

real data or human data. Also, the test results in this project are represented correctly 

in this dissertation. 

 

⚫ Duty to The Profession 

I discussed with my supervisor and a classmate who did similar project like mine 

in order to figure out better methods for improving my project and learning new 

knowledge about development on FPGA. Also, I tried to improve my project with any 

possible approach. 
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6. Future Work 

    For the QR algorithm, F. Rotella [16] introduced a method to parallel the process 

of QR factorization. In my implementation of the QR algorithm, it needs to eliminate 

every non-diagonal element in a matrix one-by-one. If it can be parallelized, the 

performance of the QR algorithm should be improved. On the other hand, the clock of 

the Jacobi implementation was not default data clock 300 MHz of Xilinx Alveo U200. 

In my opinion, by rewriting some code in Jacobi method can make the implementation 

meet the requirement of executing the bitstream of Jacobi with default clock. As a 

result, the execution time of Jacobi method on FPGA with DDR RAM could be faster 

than Intel CPU on livfpga. Moreover, finding an approach for making ap_fixed type 

work properly on implementations is another work can be done in future. For the 

purpose of comparing this project with others approaches, the approaches in Lin [10] 

can be implemented for this purpose. Also, putting implementations into open-

sourced library like fBLAS [28] can be done in future works. 
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7. Conclusion 

In recent years, FPGA has become a popular technology for many different fields 

such as machine learning. FPGA technology enables programmers to develop their 

own circuit for specific purposes without having to produce an ASIC. As a result, FPGAs 

can be deployed in an HPC environment because programmers are able to change the 

overlays in FPGA anytime, which means they can design specific applications in FPGA. 

On the other hand, finding Eigenvalues is an important mathematic technique for 

machine learning and other fields. We have shown that this process can be 

implemented on an FPGA. Popular algorithms for eigenvalues and eigenvectors 

include the QR algorithm and Jacobi method. This project has implemented the QR 

algorithm and Jacobi method on two FPGA platforms and we have quantified 

performance improvement for accelerating the process of finding eigenvalues and 

eigenvectors for real symmetric matrices.  

Implementations FPGA of PYNQ Z2 were faster than ARM core. However, 

Implementations for FPGA on HPC environment were slower than Intel CPU when 

placing matrices in DDR RAM. On the other hand, by placing matrices in BRAM which 

eliminates latency and overhead of transferring data between kernel and DDR RAM. 

But, the size of matrices is restricted due to the size of BRAM. Moreover, adding the 

number of kernels on FPGA can enable FPGA to handle multiple matrices at the same 

time which is an advantage than CPU. For accuracy, the QR algorithm is more accurate 

than Jacobi method if we compare the eigenvalues from Numpy with both 

implementations. 

There are some points that can be used for improving the performance on FPGA. 

By optimizing HLS code which enables bitstream files are executed at default clock in 

terms of maximum clock. Also, by paralleling some process like QR factorization in the 

QR algorithm can decrease execution time as well. 
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Appendix 

Size 

avg latency (ns) 

in_matrix 

read 

in_matrix 

write 

out_matrix1 

write 

out_matrix2 

read 

out_matrix2 

write 

7100 254 161 196 234 159 

7200 254 185 195 208 177 

7300 253 133 195 217 129 

7400 254 125 195 217 121 

7500 253 125 195 217 122 

7600 254 125 198 217 121 

7700 253 125 194 194 122 

7800 253 125 196 217 122 

7900 253 127 197 217 123 

8000 254 339 197 217 349 

8100 253 125 196 217 122 

8200 253 128 196 223 124 

8300 253 125 196 217 121 

8400 253 125 197 217 121 

8500 253 129 195 217 125 

8600 253 125 193 217 121 

8700 251 159 195 228 157 

8800 253 173 195 217 158 

8900 250 132 195 219 129 

9000 253 125 195 217 121 

Table A.1 Average Latency for Read/Write of Each Memory Port 

Size 

# of data transfer of ports 

in_matrix 

read 

in_matrix 

write 

out_matrix1 

write 

out_matrix2 

read 

out_matrix2 

write 

Total # of data 

transfer 

7100 32550545 124648196 444 117306200 117313300 391818685 

7200 33476400 128397601 450 120844800 120852000 403571251 

7300 34381547 131256198 457 123523300 123530600 412692102 

7400 35342207 135157108 463 127198600 127206000 424904378 

7500 36323952 139130203 469 130935000 130942500 437332124 

7600 37241900 142087701 475 133729600 133731200 446790876 
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7700 38263154 146228705 482 137614400 137622100 459728841 

7800 39228884 149540385 488 140735400 140743200 470248357 

7900 40244680 153424031 494 144388300 144396200 482453705 

8000 41242000 157046001 500 147808000 147816000 493912501 

8100 42499848 164514199 507 154823400 154831500 516669454 

8200 43321339 164701840 513 155004600 155012800 518041092 

8300 44454811 169888562 519 159882900 159891200 534117992 

8400 45453975 172886176 525 162716400 162724800 543781876 

8500 46549534 176909785 532 166489500 166498000 556447351 

8600 47646922 181106023 538 170443400 170452000 569648883 

8700 44499979 112938530 544 106287900 106296600 370023553 

8800 49937250 190618451 550 179405600 179414400 599376251 

8900 46570279 118184130 557 111223300 111232200 387210466 

9000 52199136 198642637 563 186948000 186957000 624747336 

Table A.2 Number of Transmission of Each Memory Port 

Size 

# of transfer * avg latency (Sec) 

in_matrix 

read 

in_matrix 

write 

out_matrix1 

write 

out_matrix2 

read 

out_matrix2 

write 
Total Latency 

7100 8.26784 20.0684 8.7E-05 27.4497 18.6528 74.4388 

7200 8.50301 23.7536 8.8E-05 25.1357 21.3908 78.7832 

7300 8.69853 17.4571 8.9E-05 26.8046 15.9354 68.8957 

7400 8.97692 16.8946 9E-05 27.6021 15.3919 68.8657 

7500 9.18996 17.3913 9.1E-05 28.4129 15.975 70.9692 

7600 9.45944 17.761 9.4E-05 29.0193 16.1815 72.4213 

7700 9.68058 18.2786 9.4E-05 26.6972 16.7899 71.4463 

7800 9.92491 18.6925 9.6E-05 30.5396 17.1707 76.3278 

7900 10.1819 19.4849 9.7E-05 31.3323 17.7607 78.7598 

8000 10.4755 53.2386 9.9E-05 32.0743 51.5878 147.376 

8100 10.7525 20.5643 9.9E-05 33.5967 18.8894 83.803 

8200 10.9603 21.0818 0.0001 34.566 19.2216 85.8298 

8300 11.2471 21.2361 0.0001 34.6946 19.3468 86.5247 

8400 11.4999 21.6108 0.0001 35.3095 19.6897 88.1099 

8500 11.777 22.8214 0.0001 36.1282 20.8123 91.539 

8600 12.0547 22.6383 0.0001 36.9862 20.6247 92.3039 

8700 11.1695 17.9572 0.00011 24.2336 16.6886 70.049 

8800 12.6341 32.977 0.00011 38.931 28.3475 112.89 
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8900 11.6426 15.6003 0.00011 24.3579 14.349 65.9498 

9000 13.2064 24.8303 0.00011 40.5677 22.6218 101.226 

Table A.3 The Data Transfer Time on Different Memory Port 

Size 
Jacobi from 7100 to 9000 (Sec) 

C++ + FPGA Kernel Time C++ + FPGA CU Time Iterations 

7100 12.9762 12.9762 9995 

7200 13.8674 13.8675 10164 

7300 12.2029 12.203 10224 

7400 12.1985 12.1986 10339 

7500 12.5743 12.5744 10564 

7600 12.8298 12.8298 10643 

7700 13.1799 13.1399 10818 

7800 13.5517 13.5518 10910 

7900 13.9876 13.9877 11050 

8000 23.4107 23.4112 11184 

8100 14.8616 14.8617 11617 

8200 15.2174 15.2177 11428 

8300 15.3437 15.3438 11647 

8400 15.6042 15.6044 11697 

8500 16.3036 16.3038 11827 

8600 16.3665 16.3667 11983 

8700 12.2418 12.2419 6109 

8800 19.9633 19.9636 12324 

8900 11.5334 11.5334 6249 

9000 18.3196 18.3199 12568 

Table A.4 Execution Time of Jacobi with Size from 7100 to 9000 

 


