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1. ABSTRACT: 

The aim of this project was to minimise the energy consumption of a computer program 
over its runtime, thereby increasing the energy efficiency of computing. 

We examine the feasibility of using machine learning to minimise the energy consumption 
of any given computer program over its runtime. By successful application of this approach 
we could therefore increase the energy efficiency of computing generally. 

Our approach involves measuring the energy consumed during the run time of a given 
simulation, for a known set of user variables (e.g. compiler, computer chip architecture, 
number of parallel processing elements). We also require analysis of code characteristics 
such as the number of floating-point operations and run time (as explained further in Design 
Section).  

For appropriate machine learning predictions, we require a vast set of these inputs and the 
corresponding energy consumption data. We therefore set out to construct an appropriate 
benchmarking suite. 

Optimising for energy efficiency requires analysis of code characteristics and measurement 
of energy consumption for a variety of computer programs with different characteristics, to 
achieve this a benchmarking suite was created consisting of a variety of pre-existing 
benchmarks to allow for the simulation of common HPC workloads. 

Through simulation of common High-Performance Computing (HPC) workloads this project 
aimed to gather characteristics common to typical HPC workloads and use said 
characteristics in training a machine learning model to provide an accurate prediction of 
energy consumption for an HPC computer program given its characteristics. This prediction 
is then used to suggest the optimal user configurable settings to minimise energy 
consumption. 

For the purposes of this project all testing was completed using the Barkla HPC system at 
the University of Liverpool, The Barkla HPC system [1] uses the CentOS operating system 
based on the Linux kernel along with the Slurm workload manager. 

Recording of energy consumption and code characteristics was accomplished using the Perf 
[2] tools program for Linux and the Benchmark suite consists of programs written in the C 
programming language to remove possible variance in energy efficiency of different 
programming languages from this projects results. 
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Accomplishing the aims of this project a software suite was required consisting of several 
utilities:  

• Slurm output parser 
o Reads benchmark output data and generates a comma separated values 

dataset. 
 

• a dataset splitter  
o Divides a given dataset into training and testing datasets.  

 
• a machine learning program 

o Requires training and testing datasets as input, perform feature selection and 
fitting of a machine learning model. 

o Makes a prediction using the testing dataset, also calculates an optimal user 
configuration of settings for a given workload. 

The Benchmark suite consists of Benchmarks from 3 suites, the NASA Parallel Benchmarks 
suite, HPC Challenge Linpack benchmark and Mantevo Mini-Apps benchmark suite. [3, 4, 5] 

The project produced a proof of concept system for the running of the benchmark suite, use 
of the software suite to analyse outputs and generate a prediction of energy consumption 
for given test data including suggested optimisations in the form of suggested user 
configurable options. 

2. INTRODUCTION: 

Overview & problem addressed: Workloads in a High-Performance Computing (HPC) 
environment can have runtimes lasting over several days or weeks, as a result of this energy 
consumption for HPC workloads can be high. Despite this, it is not common for users to 
attempt to determine the optimum user configurable settings to minimise energy 
consumption for a given workload, since it can be time consuming and involve much trial 
and error. The aim of this project is to take a workload and based on the characteristics of 
its code, generate a predicted energy consumption value and suggest optimal user 
configurable settings to minimise energy consumption. By automating this process, we 
would expect greater uptake by users and administrators of supercomputing facilities, thus 
resulting in significant reduction of energy consumption and thus carbon emissions and 
financial cost. 
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High Performance Computing typically has 3 limitations with regards to a workload:  

• Computing resources available: A given HPC system has a finite amount of 
computational resources to run a workload and most HPC systems are multi-user 
meaning there is more than 1 workload to be run on the HPC system, therefore it is 
ideal to use the minimum computational resources possible to successfully execute a 
given workload. 

• Time: Some workloads can be time sensitive for example the results from a weather 
prediction workload are only valuable for a specific time period in the future, HPC 
systems can also charge per minute of operation for a customer’s given workload, 
therefore it is ideal to minimise the time a workload takes to successfully execute. 

• Energy: As a combination of computing resources used and time taken for workload 
execution, the energy consumption of a given workload is desired to be minimised 
for considerations of electricity cost for HPC operation during the execution of a 
workload and also the reduction of electricity consumption for environmental 
concerns to reduce carbon emissions from electricity generation. 

This project aimed to maximise energy efficiency for typical workloads on an HPC system, 
through minimising energy consumption the aim is to reduce electricity consumption and 
therefore cost of HPC operation as well as reduce the carbon footprint of HPC. 

Solution produced: The solution created by this project to minimise energy consumption 
consists of 2 suites of software, more details can be found in the design section: 

1- Benchmarking suite, consisting of existing well-known HPC benchmarks which 
simulate common workloads. The suite consists of the following benchmarks:  

- NASA Parallel Benchmarks 
- HPC Challenge Benchmark 
- Mantevo Mini-Apps Benchmarks 

 
2- Software suite, written during this project consisting of: 

o Slurm output parser and comma separated value dataset generator, taking 
data from benchmark results and gathering data on code characteristics and 
energy consumption.  
 

o train/test splitter to split a CSV dataset into training and testing datasets.  
 

o Machine Learning program 
i. Perform feature selection using 3 feature selection techniques: 

• Pearson’s Correlation Coefficient 
• Spearman’s Rank Coefficient 
• Kendall Rank Coefficient 
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§ Fit machine learning model to dataset and features, consisting of two 
user selectable models, details of which can be found in the design 
section: 

• Linear Regression 
• Random Forest Regression 

 
§ Predict energy consumption value for each test case given program 

characteristics and use of this prediction to suggest optimal user 
configurable settings to minimise energy consumption. 

User configurable settings: Refers to Slurm job scheduler arguments and compiler options, 
for the purposes of this project such settings were reduced to: (Note: example values) 

1. Compiler used: GCC / ICC 
2. Compiler optimisation level: O0, O1, O2, O3 
3. Parallelisation technology: MPI, OpenMP, Hybrid (MPI + OpenMP) 
4. Architecture: x86, ARM 
5. Platform: Intel, AMD, ARM 
6. Processor: Intel Xeon Gold 6138 
7. Processor Generation: Skylake 

Effectiveness of Solution: Solution produced allowed for parsing of benchmark output data 
to retrieve energy consumption and code characteristics for each workload, splitting of 
dataset into train and test datasets, feature selection based on common values between 
Spearman, Pearson and Kendall tau methods, prediction of energy consumption values 
using the machine learning models of linear regression and random forest regression. 

Evaluation of the success of this project will be the measure the accuracy of the machine 
learning model when predicting energy consumption of a workload based on its code 
characteristics, and the energy consumption reduction when applying suggested optimal 
settings to a given workload. 

the following are the assessment criteria used to determine project success, stratified for 
each machine learning model: 

1. Root Mean Square Error (RMSE) – standard deviation of predictions. 
2. R^2 – coefficient of multiple determination for multiple regression, percentage 

variance between line of best fit and values. 
3. Percentage variance average – average percentage difference between predicted 

values and actual values. 

The project was concluded to be a success based on the results from Random Forest 
Regression model achieving an accuracy of 1.81% for energy consumption predictions and 
reducing energy consumption for given workloads by 22.55% through application of 
suggested optimal user configurable settings, thereby achieving the goal of this project to 
minimise energy consumption for HPC workloads. 
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BACKGROUND RESEARCH: 

For the initial conduct of this project a method to measure energy consumption and code 
characteristics for a workload on an HPC system was required, project testing was 
performed using the Barkla HPC system at the University of Liverpool.  

Initial research for the project was centred around a standard method for the measurement 
of energy consumption, It is from this point that the PowerStack working group [6] was 
discovered due to their objective of creating a standard power management architecture 
for HPC systems, use of such a system for this project would have allowed for vendor-
agnostic use of project software due to standard energy consumption recording API’s, 
however after attending the PowerStack Seminar in June 2020 it was found that the 
PowerStack project is only in preliminary stages at present and a working solution was not 
available at the time of this project.  

Another research topic considered was the Global Extensible Open Power Manager 
(GEOPM) framework [7] which allows for energy consumption measurements in a standard 
method across system and also performs energy optimisation by adjusting CPU frequencies 
and power, however due to the nature of this framework it was decided for the purposes of 
this project not to use such a framework as project results may have been unreliable as to 
whether energy efficiency gain was a result of this projects work or GEOPM optimisations. 

Final energy consumption measurements and recording of code characteristics was 
performed using the Perf Tools for Linux application due to its low level access to 
performance counters and kernel events on Linux based systems, this tool allowed for 
access to energy consumption values, specifically using the Running Average Power Limit 
(RAPL) counters for energy consumption on Intel processor platforms to record energy 
consumption values for processor cores, entire processor die and CPU attached dedicated 
memory. [8] 

This project was limited to CPU energy consumption (i.e. non-GPU workload energy 
consumption optimisation) therefore use of Core, Package and Memory energy 
consumption counters were appropriate when evaluating the energy consumption of a 
given workload, as the majority of system energy consumption is from CPU and memory 
energy consumption, with energy consumption of other components such as storage drives, 
fans, Motherboard components etc making up a minority of remaining system energy 
consumption. 

Perf tools grants access to kernel and hardware level performance counters which allow for 
the recording of CPU operations for a given workload such as floating point operations, 
branching operations and integer arithmetic operations among others, through recording of 
these counters it was possible to determine the runtime characteristics of a workload thus 
allowing for the comparison of one workload to another based on these runtime 
characteristics. 
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Due to the runtime of this project it was deemed unfeasible to record counters for each 
workload run on an HPC system however the software suite produced for this project allows 
for compatibility with such an implementation, instead a benchmarking suite was 
assembled using open-source benchmarking applications to simulate common workloads on 
an HPC system, simulated workloads allow for the prediction of energy consumption for real 
workloads based on shared code characteristics between benchmarks and real workloads, 
the benchmarking suite consists of the industry standard Linpack benchmark, Nasa Parallel 
benchmarks and Mantevo Mini-Apps to simulate HPC workloads. 

Job submission and collection of performance counter records was done through a batch 
job scheduler, which required the submission of jobs using a Bash shell script, included in 
this project is a standardised example of a Bash shell script to run benchmarks and record 
performance counter results in a standard output format to enable compatibility with this 
projects software suite, an example of which can be found in appendix as 
“BATCHEXAMPLE.txt”. 

The example bash script for running a benchmark repeats execution in a loop iterating over 
all cores in an HPC system from single core execution to all available cores on a node, while 
recording performance counters for each execution, benchmarks are also stratified based 
on compiler used and optimisation level, the full list of counters collected using Perf Tools in 
this project along with their definition can be found in the appendix under 
“PERFeventcodes.txt”. 

Due to the predictive nature of this project, predicting an energy consumption value and 
seeking to minimise energy consumption of a workload, there was a significant machine 
learning component to this project from the outset as a result, this required research into 
machine learning methods such as models and prediction of a continuous value, feature 
selection from a dataset and creation of such datasets for the application of machine 
learning. 

For the purposes of this project the Python programming language was used due its support 
for data science libraries and their application for machine learning in this project. 

Principal Component Analysis was performed on the project dataset to reduce the number 
of features used in fitting a machine learning model, to both improve model performance by 
reducing execution time and also improve prediction accuracy through elimination of poorly 
correlated features, this process is known as Feature Selection. 

Three methods from the SkLearn library were used for determining feature correlation to a 
continuous value, known as the target value for prediction which in the case of this project 
was total energy consumption, methods described in detail in design section: 

1. Pearson’s Correlation Coefficient 
2. Spearman’s Rank Coefficient 
3. Kendall Rank Coefficient  
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Use of the aforementioned feature correlation methods resulted in correlation values to 
target for each feature, the process of feature selection was to select the 10 most and least 
correlated values common amongst all 3 correlation methods results, where most and least 
correlated means: Most – As X increases Y increases, Least – As X increases Y decreases.  

For the prediction of a value for total energy consumption the use of a machine learning 
model was required which could return a continuous value as output, as the target feature 
of this project is the measure of total energy consumption in joules. 

Based on the input features and dataset given to a machine learning model, this was not a 
classification problem but a regression problem as such a regression machine learning 
model was required and two models were selected for use, details in design section:  

1. Linear Regression 
2. Random Forest Regression 

Upon generation of a prediction for total energy consumption based on code characteristics 
in a training dataset, the following steps were devised for the generation of the suggested 
optimal user configurable settings, the stages are described below: 

1. Using the predicted energy consumption value for a workload, compare 
predicted value to test dataset and find the nearest value which is an actual 
value in the test dataset. 

2. Using the nearest test dataset value, determine the benchmark ID used to 
generate said value by fetching benchmark data for the nearest value row. 

3. Using the fetched Benchmark ID, stratify training dataset for all rows 
matching fetched benchmark ID. 

4. Select row from stratified training dataset with minimum total energy 
consumption value. 

5. Fetch user variables from selected row, and return as suggested optimal 
settings for predicted energy consumption value. 

6. These suggested optimal settings can then be used test if a reduction in 
energy consumption against predicted value is possible for a given workload. 
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3. DESIGN: 

The design stage of this project consisted of meeting the following objectives for data 
collection and system functionality: 

1. Measurement of energy consumption and recording of performance data 
2. Running Benchmarking suite with changing user variables 
3. Collection of benchmark outputs 
4. Creation of machine learning dataset 
5. Prediction of energy consumption given dataset 
6. Suggestion of optimal user variables for energy consumption reduction 

The hypothesis tested in the project is defined as follows:  

For a given code there exists the potential of optimisation in terms of energy efficiency 
(using the least amount of energy possible to get a solution), solely by knowing the 
characteristics of a given code, it is possible to predict its energy consumption and suggest 
user variable configuration to optimise for energy consumption reduction. 

Prediction of energy consumption for given code is only possible through measurement of 
energy consumption for pre-existing code and recording of code characteristics through 
means of performance counters, such records can then be used for the prediction of energy 
consumption for other code based on similar characteristics. 

- Recording of energy consumption for pre-existing code was performed using Perf 
tools and access to the Intel RAPL (Running Average Power Limit) utility, for 
recording of the following energy consumption values: 
 
1. Core 

i. Sum of energy consumption for all cores in a processor 
ii. Note: Core may not be available to Intel Processors released after Haswell 

Generation (2014) 
2. Package 

i. Energy consumption for entire processor die 
ii. Note: Standardised method for CPU energy consumption measurement 

after Haswell Generation (2015-Present) 
3. Memory 

i. Energy consumption for Random Access Memory attached to processor, 
also called Dedicated Memory 
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The following were classified as benchmark characteristics for measuring defining features 
of different programs, the data points from which would be used for comparison to test 
programs and allow for energy consumption prediction through characteristic similarities to 
training benchmark data: 

1. Integer Intensive 
o A workload that makes heavy use of integer instructions, all programs make 

use of integer instructions to some extent and so the energy efficiency with 
integer intensive workloads can indicate general energy efficiency and 
performance of a system. 
 

2. Floating point intensive 
o A workload containing heavy use of floating-point operations typical 

processors contain integer execution units and floating-point execution units, 
thus the energy efficiency and performance of integer intensive operations 
may not correlate with the energy efficiency or performance of floating-point 
intensive operations for the same system. 
 

3. Input / Output (I/O) Bound 
o A workload whose data structures cause a significant percentage of 

processor cycles to be stalled awaiting data to load, as a result of this 
limitation processor performance degrades, this measure is an indication of 
the input / output performance of a system, such workloads will benefit 
more from CPUs with high bandwidth cache memory and Random Access 
Memory, along with low latency and high bandwidth system storage. Due to 
the necessity of data being moved between CPU and system memory along a 
bus with a fixed data transfer rate, the bandwidth of which can limit the 
speed of computation, a limitation known as the Von Neumann bottleneck.  
 

4. Memory bound 
o A workload whose total execution time is determined primarily by the 

capacity of memory available, latency of memory access and data transfer 
bandwidth. Such workloads benefit from greater memory capacity, 
bandwidth and low latency. 
 

5. Compute bound 
o A workload whose total execution time is determined by the instructions per 

cycle and frequency rate of the CPU, an example workload containing many 
calculations on small amounts of data is likely to be compute bound and will 
benefit from an increase in instructions per cycle and frequency of CPU. 

Use of these characteristics allows for the evaluation of different aspects of system 
performance in terms of Memory, CPU and I/O, as well as energy efficiency of different 
workloads, the assumption being that a CPU may have greater energy efficiency for certain 
workloads than others, note however that this classification list is a broad definition of 
measurements which were expanded upon during project realisation. 
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The collection of energy consumption data and code characteristics were used with a 
Benchmarking suite containing well-known pre-existing HPC benchmarks which simulate 
common workloads. The benchmarking suite, notably the standardised batch submissions 
script was designed for use with the slurm workload manager as this was the job scheduler 
used for the test hpc system, however the benchmark suite can be used with other 
workload managers however this will require conversion of slurm commands to be 
compatible with other job scheduler systems.  

All Benchmarking data was collated into a single dataset for further evaluation, the aim of 
the benchmarking suite is to create a standardised method for the measurement of code 
characteristics and energy consumption in an HPC system, with the result of standard 
output files which can then be converted to a dataset using the project software suite to 
allow for use of machine learning.  

The Benchmarking suite created for this project consists of existing well-known HPC 
benchmarks which simulate common workloads. The suite is an amalgamation from three 
existing benchmarking suites, namely the NASA Parallel Benchmarks suite, HPC Challenge 
Linpack benchmark and Mantevo Mini-Apps benchmark suite, details of which are included 
below: 

1. NASA Parallel Benchmarks 
• IS – Integer Sorting: Tests random memory access. 
• DC/DT – Data Cube: Unstructured computation, parallel input / output and 

data movement between CPU, Memory and Storage. 
 

2. HPC Challenge Benchmark 
• Linpack: measure a system's floating-point performance through solving an X 

by Y system of linear equations. 
 

3. Mantevo Mini-Apps Benchmarks 
• CloverLeaf – Hydrodynamics simulation using two-dimensional Eulerian 

formulation. 
• MiniAero – unstructured finite volume code that solves the compressible 

Navier-Stokes equations. 
• miniMD – A light-weight molecular dynamics application. 
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The result of each benchmark execution in the suite was given a pre-determined name 
along with other information regarding the user variable configuration for each benchmark 
run as shown in the example below: 

1. Benchmark ID 
o Number to identify row in dataset 

2. Benchmark Name 
o Name of run benchmark 

3. Optimisation level (Compiler) 
o Optimisation level of compiler used e.g. O0-O3 

4. Platform 
o Manufacturer / Designer of CPU e.g. Intel, AMD, ARM 

5. Architecture 
o Processor architecture e.g. x86, ARM, PowerPC 

6. Processor name 
o Name of processor used for benchmark run 

7. Processor generation 
o Name of processor generation 

8. Threads used (Cores used) 
o Number of CPU cores used for benchmark run 

9. Parallelisation Technology 
o How workload was parallelised e.g. OpenMP, MPI or Hybrid (OpenMP + MPI) 

Standardised output files from the benchmarking suite are parsed for energy consumption 
and performance counter data, with all values added to a dataset for later use in machine 
learning by the software suite produced for this project, by evaluating data produced from 
benchmarking we observed correlations between code characteristics through performance 
counter data and energy consumption, where such a correlation exists the characteristics in 
question are selected for use in prediction of energy consumption, this project also planned 
to observe any differential in energy consumption for a given code across CPU architectures. 

Standardised output files were achieved through the use of a standard format job 
submission batch script created for this project, which used a standardised method for the 
recording of user variable configurations, energy consumption measurement and 
performance counter measurement, such standard format batch script was modified for use 
with OpenMP and MPI parallelisation technologies, as well as use of benchmark specific 
required libraries to be loaded for a given benchmark run, an example of the standardised 
batch script can be found in the appendix of this project under the title: 
“BATCHEXAMPLE.txt”, as well as a used example of an MPI batch script under the title: 
“BATCHUSED.txt”. 

Note however that both “BATCHEXAMPLE.txt” and “BATCHUSED.txt” are in the wrong 
format for sbatch submission in Slurm, when opened the user should configure the example 
batch scripts to their liking and save them with the “.sh” (shell) file extension to allow for 
usage with slurm’s sbatch system. Also, all benchmarks, output files and batch scripts can be 
found in the project appendix folder titled “eep” as this folder contains all results from 
testing. 
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An exhaustive list of performance counters recorded through perf by the standardised batch 
script can be found in the appendix under the filename “Performance_counters_list.txt”. 
This list of performance counters is used as a measure of code characteristics which allow 
for energy consumption prediction through comparison to other code in machine learning. 

Through these observations the goal was to perform data analysis on energy consumed over 
runtime for each benchmark code and architecture, then through use of machine learning 
over correlated features to generate a prediction for energy consumption for a program 
based on its features, and a suggestion of user variable configuration to optimise a program 
for minimal energy consumption, in the form of environment variables, job scheduler flags 
and CPU architecture for which the program should be executed. 

To meet the aims of this project a Machine Learning software suite was created consisting 
of the following utilities:  

• Slurm output parser 
o Reads benchmark output data and generates a comma separated values 

dataset. 
 

• Dataset splitter  
o Divides a given dataset into training and testing datasets.  

 
• Machine learning program 

o Requires training and testing datasets as input, perform feature selection and 
fitting of a machine learning model. 

o Makes a prediction using the testing dataset, also calculates an optimal user 
configuration of settings for a given workload. 

Through the prediction of energy consumption for a given code, the suggestion of optimal 
user variable configuration is done though use of machine learning by selection of the 
closest datapoint to the energy consumption prediction value and gathering of said 
datapoints benchmark classification, performing dataset stratification based on benchmark 
identifier and selection of energy consumption minimum record in the strata, of which the 
user variable configuration will be returned to the user as a suggested energy consumption 
optimisation configuration for user variables, details of which can be found in realisation 
section. 

Prior to the application of machine learning to a training dataset it is necessary to reduce 
the number of datapoints known hereon in as features, to be considered in order to 
improve machine learning model performance and accuracy by selecting features with 
greatest and least correlation to our target feature of total energy consumption. 
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Features selected from the training dataset were chosen based on their correlation to total 
energy consumption. Each feature selection method used in this project calculates the 
correlation coefficient between each feature and our target feature of energy consumption, 
with a value between -1.0 and +1.0, +1 being a positive correlation (As X increases, Y 
increases) and -1 being a negative correlation (As X decreases, Y increases), correlation 
values were determined using three feature selection methods as detailed below: 

1. Pearson’s Correlation Coefficient 
o Measures only a linear correlation between 2 variables X and Y, this only 

applies for relationships between variables where the increase in value X is 
associated with a proportional change in variable Y, as Pearson’s assumes 
normal distribution of values where proportional relationship does not 
change. 
 

2. Spearman’s Rank Coefficient 
o Measures non-linear correlation between 2 variables X and Y, through 

statistical dependence ranking of 2 variables it assesses whether the 
relationship between 2 values is monotonic, which is defined as whether the 
value of variable X increases, Y increases or as the value of X decreases, Y 
increases, however Spearman’s differs from Pearson’s as the rate of 
increase/decrease does not have to be constant, this is known as a 
monotonic relationship / function. 
 

3. Kendall Rank Coefficient  
o Measures ordinal concordant and discordant association between variables X 

and Y, typically returns correlation values similar to Spearman’s. 

*Note: Correlation is simply the degree to which two features are linearly 
related, high correlation = close to linear relationship, low correlation = non-
linear relationship. 

Machine learning for this project was designed around the prediction of a continuous value 
and therefore the selection of machine learning regression models was required.  
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For the purposes of this project two regression models were selected for the creation of a 
prediction engine details of which are below: 

1. Linear Regression 
o Machine learning model in which the target variable is a continuous value (a 

number not a classification), nature of the regression line is linear resulting in 
a “Line of best fit” through datapoints by establishing the relationship 
between the target variable (Y) and multiple independent variables (X). 

o This model can be represented by the equation Y=a+b*X + e, where a is the 
intercept, b is line degree and e is the error term, such equation can be used 
to predict the value of a target variable based on given independent 
predictor variable values, making for an obvious choice in machine learning 
where a predicted result is desired. 

 
2. Random Forest Regression 

o Machine learning model with a non-linear nature, allowing for the creation of 
a prediction based on previously observed labels, as such the accuracy of 
random forest regression models increases proportional to dataset size, 
through the generation of many decision trees during model training this 
technique outputs the mean prediction of individual trees in the forest, 
which acts as a meta-estimator through aggregation of multiple decision 
trees to make predictions for a target variable (Y) based on predictor values 
(X), Random Forest Regression is typically a more accurate predictor model 
than linear regression however due to the nature of random forests (i.e. 
random decision trees) it can be difficult to know why the model made the 
predictions it did. However, owing to the possible accuracy of such a 
technique it was included in this project for the purposes of predicting energy 
consumption.  

Application of either machine learning model to the projects training dataset results in the 
creation of a prediction engine which is then tested against the projects test dataset in 
which the selected model must predict the energy consumption (dependent variable) for 
each program in the test dataset using the code characteristics (independent variables) 
values, the test dataset contains an actual record of the programs energy consumption 
which allows for the comparison between the models predicted energy consumption value 
and the actual energy consumption value for a given code, this enables us to determine the 
accuracy of each machine learning model by calculating and recording the percentage 
difference between actual energy consumption values vs model predicted values. 
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Upon generation of a prediction for total energy consumption based on code characteristics 
in a training dataset, the following steps were devised for the generation of the suggested 
optimal user configurable settings, the stages are described below: 

1. Using the predicted energy consumption value for a workload, compare 
predicted value to test dataset and find the nearest value which is an actual 
value in the test dataset. 

2. Using the nearest test dataset value, determine the benchmark ID used to 
generate said value by fetching benchmark data for the nearest value row. 

3. Using the fetched Benchmark ID, stratify training dataset for all rows 
matching fetched benchmark ID. 

4. Select row from stratified training dataset with minimum total energy 
consumption value. 

5. Fetch user variables from selected row, and return as suggested optimal 
settings for predicted energy consumption value. 

6. These suggested optimal settings can then be used test if a reduction in 
energy consumption against predicted value is possible for a given workload. 

The final goal of the project was for a given codes characteristics, generate a prediction of 
energy consumption and suggest a user variable configuration to minimise energy 
consumption, note that the software suite produced for this project can only make 
predictions and suggest optimal configurations, implementation of suggested optimal 
configurations is dependent upon the system user following said suggestion when running a 
given workload, examples of energy consumption reduction as a result of following 
suggested user optimal configuration produced by this projects software suite can be found 
in the realisation and evaluation sections. 
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4. REALISATION:  

The Projects design was implemented through the creation of two suites of software, a 
benchmarking suite and a Machine Learning Software Suite, which collected and 
transformed benchmark output data into a machine learning dataset, as well as performed 
feature selection, model training, energy consumption prediction and optimal user 
configuration suggestions. Complete details of these two software suites can be found in 
the design section. 

Each program from the benchmark suite was written using the C Programming language, for 
each run of a benchmark the user variable configuration was changed in series to allow for 
the measurement of energy consumption and performance counters under different 
runtime environment conditions, this was necessary for the evaluation of energy 
consumption based on changing environment conditions such as compiler used and 
parallelisation technology, thus allowing for the suggestion of optimum user variable 
configurations for code with similar characteristics, this full list of variables was described 
and can be found in the design section. 

Through collection of benchmark output files, which all have standardised datapoint 
outputs for our retrieval of user configuration, energy consumption and performance 
counter datapoints, it is required for this project collate all benchmark output files into a 
directory named “SlurmFiles” for use with the “Python-eepCSVGen” program in the 
Machine Learning software suite of this project. 

Upon collection and parsing of all benchmark output datapoints, the “Python-eepCSVGen” 
produced a dataset consisting of 58 total feature columns and 4154 rows of data, this 
dataset is saved as “BenchmarkOut.csv” and was split 20% / 80% into testing and training 
datasets respectively by the “Python-EEPTrainTestSplit” program, creating “train.csv” and 
“test.csv” datasets as output, the train and test datasets were then used in the “Python-
EEPML” program for training and testing of machine learning models for energy prediction 
and suggestion of optimal user variable configurations with regards to minimum energy 
consumption. 
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The Machine Learning software suite consists of three distinct programs all of which 
perform separate functions and form a dependency chain with the outputs of one program 
required as inputs for the correct functioning of the next, the dependency chain operates as 
follows:  

1. Python-eepCSVGen 
o Generates “BenchmarkOut.csv” dataset, containing collated datapoints from 

all benchmarks parsed during the execution of this program. 
o Requires input of benchmark output files into a directory named 

“SlurmFiles”, note: Output files are required to be in standardised format. 
 

2. Python-EEPTrainTestSplit 
o Takes “BenchmarkOut.csv” generated by the above-mentioned program and 

splits it into training and testing datasets based on a percentage input by the 
user, generating “train.csv” and “test.csv” as output files. (e.g. Entering 20 
will cause a 20% test / 80% train split, for the testing of this project a 
20%/80% split was used for the generation of test.csv and train.csv files) 
 

3. Python-EEPML 
o Takes “train.csv” and “test.csv” from above-mentioned program and 

performs feature selection using Pearson’s, Spearman’s and Kendall’s 
coefficients as described in the design section. 

o By using a mix of feature selection techniques we can find common features 
amongst them to select for use as important features for model fitting, as 
such the 10 most correlated features and 10 least correlated features as 
scored by the three feature selection techniques were used to create a 
feature set of 20 independent variables for machine learning model fitting to 
allow for the prediction of our 1 dependent variable of total energy 
consumption. 

o After feature selection process is finished the user is presented with the 
option to use one of the two machine learning models implemented in this 
project, Linear Regression or Random Forest Regression, a detailed 
description of both can be found in the design section.  

o Both machine learning models use the 20 selected features for prediction of 
total energy consumption, after training using the “train.csv” dataset, the 
selected model is applied to the “test.csv” dataset and using the 20 selected 
features generates a predicted value for total energy consumption, to 
evaluate the accuracy of this prediction in this projects testing an output file 
named “submission.csv” is generated which contains a dataset comprised of 
benchmark ID, actual energy consumption value, predicted energy 
consumption value and percentage variance. 
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o Upon generation of predicted energy consumption values, the program then 
performs a nearest value search for each predicted energy consumption 
value to actual energy consumption values in the “train.csv” dataset, then 
stratifies the dataset based on benchmark and finds the local minimum for 
the associated benchmark, returning the user variable configuration used to 
the user as the suggested optimal user variable configuration for use with 
their evaluated code, details of this process are included in the design 
section. 

The following Python libraries were used in the three programs which make up this project’s 
software suite, this listing shows their name and description for reference, specific libraries 
used in each program are included in their section, they’re required to be installed in Python 
environment for programs to run correctly. 

- Libraries: 
o Pandas 

i. A data analysis and manipulation library used for the creation and 
manipulation of data frames. 

o NumPy 
i. Adds support for multi-dimensional arrays, matrices and high-level 

mathematical functions. 
o Matplotlib 

i. A plotting tool for python, providing an object-oriented API for the 
generation of graphs. 

o Seaborn 
i. A data visualisation tool providing a high-level interface for the 

creation of statistical graphics. 
o SkLearn 

i. A Machine Learning library featuring various feature selection, 
classification, regression and clustering algorithms including support 
vector machines. 

o OS 
i. Handles filenames, paths, directories and general file manipulation for 

any given Operating System that the python code is running in such as 
Linux, Mac OS or Windows. 

o RE 
i. Library enabling Regular expression engine use in Python, conforming 

to Perl Regular Expression engine naming conventions and format 
standards. 

The total dataset size produced by “Python-eepCSVGen” was 4154 rows with 58 columns, 
where each row corresponds to a unique benchmark run and columns refers to all dataset 
features and datapoints collected from the benchmark output files. 
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The resulting output files from benchmark runs must be transferred from system storage 
into the working directory of the python program Python-eepCSVGen, in a directory named 
“SlurmFiles”. The Python-eepCSVGen program uses the following libraries to perform its 
functions as described: 

- Libraries: 
o Pandas 
o OS 
o RE 

these output files are then parsed during program runtime using regular expression 
matching to retrieve data values which are then stored into a pandas dataframe containing 
all recorded datapoints such as energy consumption, user variable configuration and 
performance counters as described in the design section, note: output files must contain 
the “.out” file extension for use with this program, the produced dataframe is then output 
as a comma separated values file named “BenchmarkOut.csv” for use with Python-
EEPTrainTestSplit. 

The resulting “BenchmarkOut.csv” dataset file is input to the Python program Python-
EEPTrainTestSplit which performs a randomised splitting of the input dataset into training 
and testing datasets for use in machine learning, by placing the generated 
“BenchmarkOut.csv” file into the “datasets” directory located in this programs working 
directory, this program will generate two datasets named “train.csv” and “test.csv” which 
will be split at a percentage ratio chosen by the user, however for the testing in this project 
all testing was done as a 20% / 80% split for testing and training respectively. 

The Python-EEPTrainTestSplit program uses the following libraries to perform its functions 
as described: 

- Libraries 
o OS 
o Pandas 
o SkLearn 

The resulting “train.csv” and “test.csv” are intended for use with the Python program 
Python-EEPML and were placed in the “datasets” directory in that programs working 
directory for testing. 

The resulting dataset sizes of “train.csv” and “test.csv” are as follows: 

- train.csv 
o 3323 Rows, 59 Columns 

- test.csv 
o 831 Rows, 59 Columns 

Note: Columns refers to number of dataset features & rows refers to total dataset results. 
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Resulting train and testing datasets are input to the program Python-EEPML which performs 
feature selection and model fitting to training dataset and application of trained model to 
test dataset in order to evaluate performance of the generated prediction model, this 
program also performs selection of suggested user variable configuration for the 
optimisation of energy efficiency for the execution of a given workload. 

The Python-EEPML program uses the following libraries to perform its functions as 
described:  

- Libraries 
o Pandas 
o NumPy 
o SkLearn 
o Matplotlib 
o Seaborn 

The Feature Selection techniques used for this project were Pearson’s Correlation 
Coefficient, Spearman’s Rank Coefficient and Kendall Rank Coefficient, The labelled 
heatmaps below show the results of each feature selection technique which includes the 
score of correlation to the target variable for each independent variable, along with a heat 
map colouring of green = high correlation, red = low correlation. 

Pearson’s Correlation Coefficient heatmap: 

 

Spearman’s Rank Coefficient heatmap: 

 

Kendall Rank Coefficient heatmap: 

 

As shown in all three heatmaps there exist features with high correlation scores and very 
low correlation scores, we exclude “TotalEnergy” from our considerations as this is our 
target feature. 
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Using these three feature selection techniques we can perform principal component 
analysis to reduce the feature size our machine learning model must consider, to do this 20 
features were selected based on correlation scores from the three feature selection 
techniques, 10 highest scoring features and 10 lowest scoring features, where correlation 
score can be defined as “green=high correlation = as X increases Y increases” and likewise 
“Red=low correlation = as X decreases Y increases” the resulting feature set is as follows: 

- 20 considered features, ranked highest correlation to lowest 
o Runtime 
o CPUClock 
o TaskClock 
o Migrations 
o ITLBLoads 
o CS 
o UOPSIssued 
o L2Requests 
o DTLBStoreMiss 
o Faults 
o CPUCycles 
o Arith 
o Instructions 
o L1DCacheLoads 
o UOPSExecuted 
o DTLBLoads 
o IDQOPS 
o UOPSRetired 
o BranchInstRetired 
o UOPSDispatched 

After feature selection is complete the 20 considered features can now be used by a 
machine learning model for training to create a prediction engine for the total energy 
consumption of a project given its characteristics based on the considered features we have 
selected. 

The next stage in this program is the selection of a machine learning technique for model 
creation and fitting, the two machine learning models used in this project are Linear 
Regression and Random Forest Regression, detailed information about both can be found in 
the design section. 

The User may choose the machine learning model of their preference through inputting 1 
(Linear Regression) or 2 (Random Forest Regression) when prompted by the program, 
selecting either will begin the model fitting and training phase in which the machine 
learning model will use the dataset from “train.csv” for training and the dataset from 
“test.csv” for testing of the trained model, with a graphical representation of predicted 
energy consumption values vs actual energy consumption values displayed for user 
evaluation along with calculations for R^2 Variation and Root Mean Squared Error (RMSE). 
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Upon training of the machine learning model chosen, the model will perform energy 
consumption value predictions using “test.csv” dataset, generating an output file 
“submission.csv” which contains the Benchmark ID of each benchmark code considered, the 
actual energy total as measured by performance counters, the predicted energy total as 
calculated from selected features and the percentage difference between them. 

After calculation of predicted values the Python-EEPML program then calculates the 
suggested user variable configurations for optimising energy consumption, details of this 
process can be found in the design section, however this process returns the local minimum 
energy consumption user variable configuration for the nearest actual energy consumption 
value to the predicted value generated by the program, this is output as a dataset file 
named “PredictionOptimization.csv” which contains all the features and values from 
“submission.csv” but also includes the suggested optimal user variable configuration. 

Included below are graphs showing the predicted vs actual values for total energy 
consumption for Linear Regression model and Random Forest Regression model 
respectively. 

- Linear Regression 
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- Random Forest Regression 

 

Through use of the suggested user variable configuration this project reduced energy 
consumption against the standard baseline, more information on this topic is discussed in 
the Conclusion. 

5. EVALUATION: 

It is my view that the project was an overall success in that all requirements and goals for 
this project were met with regards to the produced proof of concept using the Barkla HPC 
system. 

The key points being the achievement of an average energy efficiency gain of 22.55% when 
using suggested optimal user settings compared to baseline settings for a test set of 6 
benchmarks as shown in the Conclusion section. 

The prediction of total energy consumption values for a program based on its code 
characteristics was also a success with an average percentage difference between actual 
energy consumption and predicted energy consumption of 1.81%, details of which can be 
found in the Conclusion section. 

The current implementation does have some room for improvement with regards to the 
manual configuration of batch scripts when using different HPC systems, requirements for 
standardised output files. Another significant drawback to this project was a lack of third-
party testing systems, as access to AMD and ARM HPC systems was achieved for this 
project. 
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However due to a lack of research time adequate testing could not be performed on such 
systems due to the necessity of proof of concept working on Barkla first, therefore a 
possible expansion of this project to HPC systems with different architectures would be an 
obvious choice. 

Owing to development time constraints the implementation of machine learning models for 
selection is limited to two, this was intended to be expanded to four with the addition of 
support vector regression and neural network regression, as such if there was more 
development time these features could have been implemented. 

Another topic for project expansion is the creation of a daemon tool for the recording of 
energy consumption and performance counters which can record the features of every code 
run on an HPC system, which would allow for a significant increase in dataset size rather 
than relying on benchmarks, also an expansion in the number of benchmarks is an obvious 
path to project expansion as greater diversity of code characteristics could yield greater 
prediction accuracy and possible energy savings from use of this projects software suite. 

The software suite produced for this project is also transportable to any HPC system with a 
Python 3.8 environment installed and all necessary libraries, which should allow conducting 
research on other HPC systems require minimal reconfiguration. 

6. LEARNING POINTS:  

The key learning points with regards to knowledge acquired and skills learned during the 
completion of this project were a greatly expanded knowledge and skill with the Python 
programming language in general as well as the application of the language along with 
multiple libraries mentioned in this project document for the purposes of Machine Learning 
and data science, with regard to dataset manipulation and performance of regression 
techniques down to evaluating different models for accuracy and how dataset size 
influences application of machine learning models, as well as the practical use of principal 
component analysis in the form of feature selection including the application of multiple 
feature selection methods. 

The low-level access to an HPC system in the form of hardware performance counters, 
energy consumption measurements and kernel event recording has given a skillset and 
knowledge into the inner workings of complex HPC systems with regards to energy 
consumption and optimising for energy efficiency. 

Actions critical to the success of the project were the use of the Perf tools for Linux, which 
allowed for an all-in-one solution for the recording of energy consumption measurements 
as well as performance counters in a standardised format which allowed for the creation of 
an output file parser to transfer benchmark outputs into a usable csv dataset for machine 
learning. 
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The things I would do differently in this project would be the minimisation of setup time as 
roughly the month on June and 2 weeks of July were lost to HPC setup though liaising with 
Alces Flight and HPC services to get the installation of perf tools and proper user account 
level permissions to allow for low-level hardware access, by getting this process finished 
earlier or setup prior to project start would have meant greater development time available 
which would have allowed for the inclusion of more machine learning models to choose 
from such as support vector regression and neural network regression. 

Another point of project expansion would be the increase in the number of benchmarks to 
expand the dataset size, a possible solution to dataset sparseness being the creation of a 
daemon tool which would automatically record code features for each code run on an HPC 
system. 

7. PROFESSIONAL ISSUES:  

This section concerns the projects relation to BCS code of conduct. 

Public Interest Rules: As no human-supplied, derived or human participants took part in this 
project except for the author Public Interest rules 1 through 4 do not apply to this project 
and as such this project is in full compliance with public interest rules 1 through 4 
inclusively. 

Professional Competence and Integrity: Although this project did require the learning of 
new skills and knowledge as is inevitable with research projects, It is my judgement that 
such work was not outside my level of competence and I did not give any false 
representation of my abilities, nor did I accept any unethical inducement during my work or 
injure others, as such this project is in full compliance with Professional Competence and 
Integrity rules 1 thorough 7 inclusively. 

Duty to Relevant Authority: This project work was conducted on behalf of myself whilst 
studying for an MSc in Advance Computer Science at the University of Liverpool and as such 
throughout this projects run and my time as a student I have observed all obligations and 
regulations which apply to me as a student, therefore this project is in compliance with Duty 
to Relevant Authority rules 1 through 5 inclusively. 

Duty to the Profession: This project work was conducted by myself along with input from 
both Project Supervisors with regards to marking of previous work and goals in the project, 
at all times BCS regulations were adhered to and the standing of myself, colleagues, 
University of Liverpool nor BCS were ever brought into disrepute to the best of my 
knowledge, as such this project is in compliance with Duty to the Profession rules 1 through 
6 inclusively in my judgement. 

It is to the best of my judgement the conclusion that this project is in full compliance with all 
BCS code of conduct rules and regulations as described on their code of conduct website. [9] 
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8. CONCLUSIONS: 

The conclusion of the project yielded the following results, what follows is an example of 
the Linear Regression model vs Random Forest Regression model, prediction accuracy when 
compared to actual values and the suggested optimal user settings suggested when using 
each model, results for both models are included and labelled where necessary. 

Below is an example of prediction accuracy with regards to predicting the energy 
consumption of a code based on its characteristics, this also includes a comparison of 
percentage variance between predicted energy values and actual energy values for each 
test benchmark ID, 20 results in total shown for each model here, the average percentage 
difference was calculated through the sum of all percentage variance shown below and 
division by number of rows (Calculated Mean). 

Note however that the table figures shown below are not all results from testing, full details 
can be found in the “submission.csv” file included in the working directory of the “Python-
EEPML” program, note however that the “submission.csv” file uploaded in the programs 
working directory contains results for Random Forest Regression model and not Linear 
Regression, to obtain live Linear Regression model figures the program must be run again 
and the Linear Regression model selected through input of “1” when prompted to choose 
machine learning model. 

- Linear Regression Model: Energy Consumption Predictions 

ID ActualEnergy PredictedEnergy PercentageVariance 
39 27.15 27.66 1.88 
359 497.2 515.48 3.68 
399 3099.58 3168.44 2.22 
439 276.08 241.23 12.62 
599 23337.55 23131.5 0.88 
2013 438.5 328.87 25.0 
1231 3294.36 3302.33 0.24 
1728 2856.65 2913.99 2.01 
3725 520.04 576.45 10.85 
1736 21.48 24.0 11.73 
1222 3717.4 3748.65 0.84 
2367 1612.93 1597.87 0.93 
96 12.22 14.62 19.64 
764 22567.47 22679.46 0.5 
109 19.58 24.0 22.57 
3166 74.75 71.57 4.25 
568 23672.73 23717.76 0.19 
2446 9.86 16.09 63.18 
2986 4077.86 4148.85 1.74 
410 402.76 338.26 16.01 
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- Linear Regression Model: Prediction based suggested optimisations 

ID Optimization Platform Architecture Processor Processor 
Gen 

Compiler Parallelization 
Tech 

Threads 
Used 

39 3 Intel x86 Intel Xeon 
Gold 6138 

Skylake gcc OpenMP 39 

359 3 Intel x86 Intel Xeon 
Gold 6138 

Skylake icc Hybrid 38 

399 3 Intel x86 Intel Xeon 
Gold 6138 

Skylake icc OpenMP 31 

439 2 Intel x86 Intel Xeon 
Gold 6138 

Skylake gcc OpenMP 39 

599 2 Intel x86 Intel Xeon 
Gold 6138 

Skylake icc OpenMP 21 

2013 2 Intel x86 Intel Xeon 
Gold 6138 

Skylake icc OpenMP 40 

1231 3 Intel x86 Intel Xeon 
Gold 6138 

Skylake icc OpenMP 31 

1728 3 Intel x86 Intel Xeon 
Gold 6138 

Skylake icc OpenMP 31 

3725 2 Intel x86 Intel Xeon 
Gold 6138 

Skylake gcc OpenMP 39 

1736 0 Intel x86 Intel Xeon 
Gold 6138 

Skylake gcc OpenMP 4 

1222 3 Intel x86 Intel Xeon 
Gold 6138 

Skylake icc OpenMP 31 

2367 2 Intel x86 Intel Xeon 
Gold 6138 

Skylake icc OpenMP 40 

96 3 Intel x86 Intel Xeon 
Gold 6138 

Skylake gcc OpenMP 33 

764 2 Intel x86 Intel Xeon 
Gold 6138 

Skylake icc OpenMP 21 

109 0 Intel x86 Intel Xeon 
Gold 6138 

Skylake gcc OpenMP 4 

3166 2 Intel x86 Intel Xeon 
Gold 6138 

Skylake gcc OpenMP 39 

568 2 Intel x86 Intel Xeon 
Gold 6138 

Skylake icc OpenMP 21 

2446 0 Intel x86 Intel Xeon 
Gold 6138 

Skylake gcc OpenMP 4 

2986 2 Intel x86 Intel Xeon 
Gold 6138 

Skylake icc OpenMP 40 

410 2 Intel x86 Intel Xeon 
Gold 6138 

Skylake icc OpenMP 40 

As the energy consumption table shows the average percentage difference for a predicted 
energy value vs an actual energy value is 10.048%, showing a fair degree of model accuracy 
for Linear Regression when predicting energy consumption values based on code 
characteristics. Other metrics used for model performance evaluation are R^2 Variance, 
RMSE and Percentage variance average, detailed descriptions of which are found in the 
design section. 

Linear Regression model scores: 

- R^2 Variance: 
o 0.9999458844247366 

 
- RMSE distance between prediction and actual: 

o 8774.886291164772 
 

- Percentage variance average: 
o 10.048% 
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- Random Forest Regression Model: Energy Consumption Predictions 

ID ActualEnergy PredictedEnergy PercentageVariance 
39 27.15 26.74 1.51 
359 497.2 494.69 0.5 
399 3099.58 3103.97 0.14 
439 276.08 280.79 1.71 
599 23337.55 23183.68 0.66 
2013 438.5 429.44 2.07 
1231 3294.36 3204.44 2.73 
1728 2856.65 2895.45 1.36 
3725 520.04 554.5 6.63 
1736 21.48 20.97 2.37 
1222 3717.4 3620.64 2.6 
2367 1612.93 1607.53 0.33 
96 12.22 11.85 3.03 
764 22567.47 22538.93 0.13 
109 19.58 19.53 0.26 
3166 74.75 73.84 1.22 
568 23672.73 23798.11 0.53 
2446 9.86 9.82 0.41 
2986 4077.86 4070.33 0.18 
410 402.76 371.37 7.79 
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- Random Forest Regression Model: Prediction based suggested optimisations 

ID Optimization Platform Architecture Processor Processor 
Gen 

Compiler Parallelization 
Tech 

Threads 
Used 

39 0 Intel x86 Intel Xeon 
Gold 6138 

Skylake gcc OpenMP 4 
359 2 Intel x86 Intel Xeon 

Gold 6138 
Skylake icc OpenMP 40 

399 3 Intel x86 Intel Xeon 
Gold 6138 Skylake icc MPI 27 

439 2 Intel x86 Intel Xeon 
Gold 6138 

Skylake gcc OpenMP 39 
599 2 Intel x86 Intel Xeon 

Gold 6138 Skylake icc OpenMP 21 
2013 3 Intel x86 Intel Xeon 

Gold 6138 Skylake gcc OpenMP 39 
1231 3 Intel x86 Intel Xeon 

Gold 6138 
Skylake icc OpenMP 31 

1728 3 Intel x86 Intel Xeon 
Gold 6138 Skylake icc OpenMP 31 

3725 2 Intel x86 Intel Xeon 
Gold 6138 

Skylake icc OpenMP 40 
1736 3 Intel x86 Intel Xeon 

Gold 6138 
Skylake gcc OpenMP 33 

1222 3 Intel x86 Intel Xeon 
Gold 6138 Skylake icc OpenMP 31 

2367 2 Intel x86 Intel Xeon 
Gold 6138 

Skylake gcc OpenMP 39 
96 3 Intel x86 Intel Xeon 

Gold 6138 
Skylake gcc OpenMP 33 

764 2 Intel x86 Intel Xeon 
Gold 6138 Skylake icc OpenMP 21 

109 2 Intel x86 Intel Xeon 
Gold 6138 

Skylake icc OpenMP 2 
3166 2 Intel x86 Intel Xeon 

Gold 6138 
Skylake gcc OpenMP 39 

568 2 Intel x86 Intel Xeon 
Gold 6138 Skylake icc OpenMP 21 

2446 2 Intel x86 Intel Xeon 
Gold 6138 

Skylake gcc OpenMP 36 
2986 2 Intel x86 Intel Xeon 

Gold 6138 
Skylake icc OpenMP 40 

410 2 Intel x86 Intel Xeon 
Gold 6138 Skylake icc OpenMP 40 

As the energy consumption table shows the average percentage difference for a predicted 
energy value vs an actual energy value is 1.808%, showing a high degree of model accuracy 
for Random Forest Regression when predicting energy consumption values based on code 
characteristics, which is an 82.006% improvement over Linear Regression model accuracy 
for the same 20 test benchmarks evaluated here. Other metrics used for model 
performance evaluation are R^2 Variance, RMSE and Percentage variance average, detailed 
descriptions of which are found in the design section. 

Random Forest Regression model scores: 

- R^2 Variance: 
o 0.9995579399288771 

- RMSE distance between prediction and actual: 
o 71680.41435561625 

- Percentage variance average: 
o 1.808% 
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The testing performed in this project determined that Random Forest Regression returned a 
more accurate model for energy consumption predictions compared to linear regressions, 
therefore the following test was performed when applying the Random Forest Regression 
Model’s Suggested optimal user variable configuration settings, we observed an average 
energy efficiency gain of 22.55% when using suggested optimal settings compared to 
baseline settings for a test set of 5 benchmarks as shown in the table below: 

ID Benchmark Total energy 
consumption 

 Suggested 
optimal settings 

Total energy 
consumption 

Energy 
efficiency 
gain/loss 

39 Mantevo 
Cloverleaf 

27.15 Joules  GCC, O0, 4, 
OpenMP 

11.43 Joules 57.90% 

359 HPC Challenge 
Linpack 

497.20 Joules  ICC, O2, 40, 
OpenMP 

497.20 
Joules 

0.0% 

399 Mantevo 
MiniAero 

3099.58 
Joules 

 ICC, O3, 27, MPI 3086.47 
Joules 

0.42% 

439 Mantevo 
MiniMD 

276.08 Joules  GCC, O2, 39, 
OpenMP 

198.78 
Joules 

28.00% 

599 NASAPB DC.A 23337.55 
Joules 

 ICC, O2, 21, 
OpenMP 

20550.26 
Joules 

11.94% 

2013 NASAPB IS.C 438.50 Joules  GCC, O3, 39, 
OpenMP 

276.07 
Joules 

37.04% 

Baseline Settings: 

Compiler: GCC Optimisation level: 
O0 

Cores Used: 40 Parallelisation 
technology: 
OpenMP 

Another interesting thing to note from these results is the variation in compiler 
setting, optimisation settings and core / threads used count, as a naïve assumption 
would be to run all programs at O3 optimisation level, using the Intel compiler (if 
using Intel CPU), with maximum number of cores. With this assumption predicated 
on the idea that shorter runtime will mean lower energy consumption, however as 
these results show that is not the case and not only can use of this projects software 
suite minimise energy consumption for HPC workloads by an average of 22.55%, it 
also doesn’t use maximum computational resources in terms of core / thread count 
to do it, thereby reducing both computational resource usage and total energy 
consumption for CPU and Memory. 

- Average energy efficiency percentage change using suggested optimal user variable 
configuration: 

o 22.55% 
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The conclusion of this research paper is that energy efficiency gains of 20%+ are 
possible through use of optimal settings suggested by this projects machine learning 
software and thanks to the portable nature of Python code the software suite for 
this project could be run in any Python 3.8 environment which includes the required 
libraries allowing for use on any HPC system. However as mentioned in the 
evaluation section this project could be easily expanded upon through creation of a 
daemon tool to record performance counters for all workloads run on an HPC 
system. 
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10. APPENDICES:  

Files included in Appendix are:  

1. Folder - “eep” – contains full Barkla workspace and results used for project 
testing 
 

2. Folder – “Python-Programs” – Contains software suite from project 
o Folder – “Python-eepCSVGen” – CSV Generator program file directory 
o Folder – “Python-EEPTrainTestSplit” – CSV Train/Test splitter program file 

directory 
o Folder – “Python-EEPML” – Machine Learning program file directory 

 
3. File – “Slurmexample.out” – example of Slurm output file used for benchmark 

test 
 

4. File – “PERFeventCodes.txt” – Contains perf event codes and hardware register 
values for Barkla HPC 
 

5. File – BATCHEXAMPLE.txt – example batch script 
 

6. File – BATCHUSED.txt – example of batch script used for benchmark test 
 

7. File – “InputTestVals.csv” – Contains 6 rows used for baseline testing as shown in 
conclusion section 
 

8. File – “COMP702 – User Guide.pdf” – Contains project user guide for how to use 
all programs in software suite and submit a job using example batch script. 
 

9. File – “Performance_counters_list.txt” – Contains an exhaustive list of all 
performance counters used in Slurm batch script for this project.  


