Ongoing research towards Energy Efficient Performant Computing

Michael Bane (December 2021)

Energy Efficient Computing Research at STFC Hartree Centre

Dr. Michael K. Bane, STFC Hartree WA4 4AD, UK

Bootstrapping EEC Research

- ICT has a significant impact on the environment
- Operational emissions: Carbon released due to running data centres, PCs & embedded devices. Estimated that US-based cloud data centres to consume 73 billion kW-hrs by 2020 [1]
 Embodied emissions: Carbon released during manufacture
- and disposal
- Other environmental footprint aspects such as high use of water (washing PCBs) and use of exotic materials

Hartree's EEC Research

The EEC research group aims to work with manufacturers and industry to provide solutions that enable

- 1. Processor/chipset to run any given code with lower amounts of energy
- 2. Any given code to run with least amount of energy on any given platform
- 3. Every data centre to be more efficient in the running of user codes

In order to tackle these, the EEC group is exploring each level of its mantra

measure – monitor – predict – reduce

as applied to energy consumed. Expected energy savings: due to the wide nature of codes (& their current energy optimisation) etc it is hard to quantify predicted savings but we look to save 20%.

References

 Muhammad Zakarya, Lee Gillam, "Energy efficient computing, clusters, grids and clouds: A taxonomy and survey", Sustainable Computing: Informatics and Systems, 14, 2017
 http://www.compat-project.eu/
 http://serv.org/

[4] http://vineyard-h2020.eu/en/ [5] https://eehpcwg.linl.gov/	
[6] https://euroexa.eu/ [7] http://www.etp4hpc.eu/	
Hartree Centre	Dr. Michael K. Bane

Hartree Centre Science & Technelogy Facilities Council http://community.hartree.stfc.ac.uk/portal/site/eecrp

..for compute, network and storage, supplemented by an array of temperature and humidity sensors and data from schedulers.

- The hierarchy of measurements needs to consider two axes: ➤ Functional Resolution - where energy is being consumed; represented as a tree with the 'root' measurement being the total energy consumed (by the data centre)
- Accuracy & Temporal Resolution the accuracy of a given "leaf" measurement and its temporal resolution; summing over leaves gives error at any required level

A trusted measurement system

to ensure monitoring is reliable for its chosen purpose
 to enhance models to accurately predict energy consumed
 nodels

)cal

under various scenarios ✓ to provide faith that *in silico* explorations of energy savings within a chip, a rack or a data centre

 \checkmark to empower policy makers (energy caps & charging models)

A hierarchy of measurements but also of energy savings

Current research ideas to reduce energy consumed at each level of the hierarchy include

- modelling of data transfer and cache coherence protocols: to reduce energy consumed at the chip-set level
- extending TSERO by inclusion of expert knowledge to reduce ML requirements (number of input data points), increase the average energy saved: to reduce energy for any given code
- extension of batch schedulers to include DVFS, automatic power off of "unwanted" nodes, and migration to more energy efficient platforms.

lessons from social science to ensure acceptance of energy caps

- STFC Hartree Centre (2016 2018) Energy Efficient Computing (EEC) Research
 - "TSERO"
 - "Vineyard"
- University of Liverpool (2018-2021)
 - teaching focussed
 - research
 - energy measure of local HPC (Barkla, 160 nodes)
 - Ryan L, ML to predict energy measurements
 - use of FPGA in EEC
 - potential role of quantum computing

https://helward.mmu.ac.uk/STAFF/M.Bane/MSc/

Energy Efficient Performant Computing

- Performant computing
 - Doing simulations & analyses {faster, higher resolution, larger domains, ...}
- Energy Efficient Performant Computing
 - Undertaking performant computing whilst reducing energy consumption (without un-acceptable adverse implications on e.g. execution times)
- Involves
 - HPC, energy measure/predict/reduce,
 - social science

Data centre

• {nodes}

- {chipset: CPU / GPU / FPGA / QC}
- {interconnects}
- Cooling

Emerging Tech

- FPGA
- Quantum Computing
- Reduced Precision
- Approximate Computing

Energy Reduction

- Use of Emerging Tech
- Quantify by measurement (*ab silico*: by prediction)
- ML determination of optimal compile & run options
- Smart scheduling

Data centre

{nodes}

- {chipset: CPU / GPU / FPGA / QC}
- {interconnects}

X	eec_archer2	+ - • ×
slurmstepd: error: couldn't ch	dir to `/home2/home/e718/e718/eec': No s	uch file or dir
ectory: going to /tmp instead		
slurmstepd: error: couldn't ch	dir to `/home2/home/e718/e718/eec': No s	uch file or dir
ectory: going to /tmp instead		
ec@nid003416 /tmp\$ ls -1 /svs	/crav/pm_counters	
total O		
-rrr 1 root root 4096 De	c 9 11:23 cpu0_temp	
-rrr 1 root root 4096 De	c 9 11:23 cpu1_temp	
-rrr 1 root root 4096 De	c 9 11:22 cpu_energy	
-rrr 1 root root 4096 De	c 9 11:23 cpu_power	
-rrr 1 root root 4096 De	5 9 11:22 energy	
-rrr 1 root root 4096 De	c 9 11:23 freshness	
-rrr 1 root root 4096 De	c 9 11:22 generation	
-rrr 1 root root 4096 De	c 9 11:22 memory_energy	
-rrr 1 root root 4096 De	c 9 11:23 memory_power	
-rrr 1 root root 4096 De	c 9 11:23 power	
-rrr 1 root root 4096 De	c 9 11:22 power_cap	
-rrr 1 root root 4096 De	c 9 11:23 raw_scan_hz	
-rrr 1 root root 4096 De	e 9 11:23 startup	
-rrr 1 root root 4096 De	c 9 11:23 version	
11:23:10		
eec@nidUU3416 /tmp% cat /sys/c	ray/pm_counters/energy	
1179522305 J 1639049000287440	18	
11:23:20		
ec@n10003416 /tmp\$		

• Example:

- Archer2 compute node
 2* AMD Rome EPYC chips (each of 64c)
- Access to Performance Monitor Counters (PMCs)
- Many tools to profile *time*
- No tools to profile *energy*

(c) Michael Bane, MMU (Dector pergy consumed, $E = \int P(t) dt$

"cloverleaf" Energy consumption on Archer2

Energy/Time to Solution Collide DP

• Calore et al (2016)

- Energy-performance trade-offs for HPC applications on highend and low power systems, EMiT2016
- Haswell chip, LBM
- Freq giving least energy varies by problem type
 - Not the fastest in either case

• Data centre

• {nodes}

- {chipset: CPU / GPU / FPGA / QC}
- {interconnects}

Emerging Tech

- FPGA
- Quantum Computing
- Reduced Precision
- Approximate Computing

Energy Reduction

- Use of Emerging Tech
- Quantify by measurement (*ab silico*: by prediction)
- ML determination of optimal compile & run options
- Smart scheduling

- For given code, coarse controls: compiler options, run time options
 - GCC .v. Intel
 - Level of optimisations (-00, -01, ...)
 - #cores, OpenMP .v. MPI implementations
- AIM: for given input code, determine set of compiler & run time options (for given ISA) that gives lowest energy-to-solution

- Need: energy-to-solution
 - Currently, require ability to measure
 - Future: develop accurate predictor
- Training
 - Run set of benchmarks for various compiler & run time options, recording energy to solution; 13 benchmarks
 - 50 features of code (via 'perf')
 - Use PCA to select 20 most relevant ({Pearson, Spearman, Kendall} rank coeffs)
 - Feature selection \rightarrow reduce overfitting, reduce time to train
 - ML options: linear regression, random forest regression
 - Python, sklearn

Pearson's Correlation Coefficient heatmap:

Spearman's Rank Coefficient heatmap:

- Red (low correlation) to green (+correlation)
- Considered perf features:
 - Run time
 - CPU clock [walltime]
 - Task clock
 - CPU (task) Migrations
 - I TLB loads
 - Context Switches
 - Micro Ops Issues
 - L2 requests
 - D TLB store miss
 - Faults
 - CPU cycles
 - Arith
 - Instructions
 - L1 D Cache Loads

• Initial testing

- 20% of initial dataset
- Average diff of energy consumed (predicted .v. actual) Linear regression = 10.0% Random Forest reg = 1.8%
- Implementation
 - Comparison of best {compiler options, run time options} to baseline of {{GCC, "-00"}, 40 OpenMP threads}

N.B. previous work, on 2*20c Intel Skylake processors per node of U/Liverpool (c) Michael Bane, MMU (Dec2021)" Barkla" (160 nodes + 20 GPUs)

ID	Benchmark	Total energy consumption	Suggested optimal settings	Total energy consumption	Energy efficiency gain/loss
39	Mantevo Cloverleaf	27.15 Joules	GCC, OO 4, OpenMP	11.43 Joules	57.90%
359	HPC Challenge Linpack	497.20 Joules	ICC, O2, 40, OpenMP	497.20 Joules	0.0%
399	Mantevo MiniAero	3099.58 Joules	ICC, 03, 27, MPI	3086.47 Joules	0.42%
439	Mantevo MiniMD	276.08 Joules	GCC, O2, 39, OpenMP	198.78 Joules	28.00%
599	NASAPB DC.A	23337.55 Joules	ICC, O2, 21, OpenMP	20550.26 Joules	11.94%
2013	NASAPB IS.C	438.50 Joules	GCC, O3 39, OpenMP	276.07 Joules	37.04%

Average: 22.5% energy saving

• Next steps

- Improvements to code base [CfACS seed funding]
 - Modularise (csv input);
 - Investigate/implement *static* code analysis for given code
 - Automate prediction of settings that give least energy to solution

- Current results from Intel Skylake platform
 - Training on more platforms
 - Test/implement per-platform
 - Test/implement x-platform including GPU & FPGA options

Recent bid (with Glasgow) to UKRI Excalibur "h/w & enabling s/w"

• Next steps

- Current results from Intel Skylake platform
 - Training on more platforms
 - Test/implement per-platform
 - Test/implement x-platform including GPU & FPGA options
- More fine grained compiler options

Data centre{nodes}

- {chipset: CPU / GPU / FPGA / QC}
- {interconnects}

• Predictors

- Current predictors focus on time
- Work with collabs (Glasgow) to predict energy consumed

• Incorporate within training of ML tool

→Ability to predict (for given code) what would be best arch and compiler options for least energy (==> smart x-platform scheduler) without having to expend compute energy in doing so

- super optimisation for energy reduction
 - exhaustive search of all possible ISA instructions (for given basic block of code), using predictor to evaluate energy cost of each option
 => global minimum of energy-to-solution
- *selected* super optimisation for energy reduction
 - S.O. for E.R and make use of Mile to , she is the prune search tree

• Data centre

• {nodes}

- {chipset: CPU / GPU / FPGA / QC}
- {interconnects}

Emerging Tech

- FPGA
- Quantum Computing
- Reduced Precision
- Approximate Computing

Energy Reduction

- Use of Emerging Tech
- Quantify by measurement (*ab silico*: by prediction)
- ML determination of optimal compile & run options
- Smart scheduling

Data Centres

- How reduce carbon footprint?
 - Use of renewables & making use of waste heat
 - Location location location
 - LUMI
 - Smart scheduling
 - Don't run what don't need to run (re-use data, reproducibility / repro repositories, AI checking on job)
 - Only run vital jobs during 'peak power' times (e.g. standard jobs run when ambient temp drops so less cooling required)
 - Social science element
 - How integrate "between" data centres?
 - How green is the cloud...?

Emerging Tech

• FPGA

- Quantum Computing
- Reduced Precision
- Approximate Computing

• FPGA

- Low power
- Not easy to program
 - C/C++ with pragmas, Verilog, VHDL
- Previous research
 - Porting linear algebra & fintech to FPGA
 - [energy results?]
- Next steps
 - Reduced / variable / mixed precision (w. Manchester, Sorbonne)
- Xilinx University Programme: cards training, 2workshop

Emerging Tech

- FPGA
- Quantum Computing
- Reduced Precision
- Approximate Computing
- Quantum Computing (QC)
 - Hype or reality?
 - Energy efficient or vastly inefficient [explain]
- Recent bid
 - QCS to evaluate use of QC to simulate gas/liquid phase changes on atmospheric aerosol
 - Potential partnership: Zapata Computing
 - If want access, contact me

One of a few ongoing collaborations with U/Manchester (other e.g. use of Big Data to analyse aerosol from coughs)

Data centre

• {nodes}

- {chipset: CPU / GPU / FPGA / QC}
- {interconnects}

Emerging Tech

• FPGA

- Quantum Computing
- Reduced Precision
- Approximate Computing

Energy Reduction

- Use of Emerging Tech
- Quantify by measurement (*ab silico*: by prediction)
- ML determination of optimal compile & run options
- Smart scheduling

Michael Bane m.bane@mmu.ac.uk E140, John Dalton East