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Bootstrapping EEC Research

ICT has a significant impact on the environment

» Operational emissions: Carbon released due to running data
centres, PCs & embedded devices. Estimated that US-based
cloud data centres to consume 73 billion kW-hrs by 2020 [1]

» Embodied emissions: Carbon released during manufacture
and disposal

» Other environmental footprint aspects such as high use of
water (washing PCBs) and use of exotic materials

Hartree’s EEC Research

H2020  energy efficient placement of
2016-18 components of multi-scale codes MEASURE &
PREDICT

TSERO [3] Innovate use of Machine Learning to Requires ability to
o UK determine compiler flags leading MEASURE; aims
/ Sf ’(//j 2014-17 to lower energy-to-solution; to REDUCE

instrumentation of data centre

H2020
2016-19 alternatives to CPU for lowering MEASURE &
energy-to-solution MONITOR

working with leading HPC

Energy Efficient -

HPC Working providers to understand & tackle MONITOR &
Group [5] & challenges of energy efficient PREDICT
ETPAHPC [6] supercomputers & data centres
EuroEXA [7]) H2020  aiming to build an exascale Requires ability to
2017-20 prototype PREDICT &
REDUCE

EURO

The EEC research group aims to work with manufacturers and

industry to provide solutions that enable

1. Processor/chipset to run any given code with lower
amounts of energy

2. Any given code to run with least amount of energy on any
given platform

3. Every data centre to be more efficient in the running of
user codes

In order to tackle these, the EEC group is exploring each level
of its mantra

measure — monitor — predict - reduce
as applied to energy consumed.
Expected energy savings: due to the wide nature of codes (&
their current energy optimisation) etc it is hard to quantify
predicted savings but we look to save 20%.
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Provision of HIERARCHICAL Measurements...

e STFC Hartree Centre (2016 — 2018)
Energy Efficient Computing (EEC) Research
 “TSERO”
* “Vineyard”

DATA CENTRE

..for compute, network and storage, supplemented by an array
of temperature and humidity sensors and data from schedulers.
The hierarchy of measurements needs to consider two axes:

» Functional Resolution - where energy is being consumed;
represented as a tree with the ‘root’” measurement being
the total energy consumed (by the data centre)

» Accuracy & Temporal Resolution - the accuracy of a given
“leaf” measurement and its temporal resolution; summing
over leaves gives error at any required level

 University of Liverpool (2018-2021)

* teaching focussed

* research
* energy measure of local HPC (Barkla, 160 nodes)
* Ryan L, ML to predict energy measurements
e use of FPGA in EEC
e potential role of qguantum computing

We will empower

researchers and data I“I”I
centre managers to sl

“drill down” to the | |H| ||| am
most appropriate

level eg from data centre .

(blue), to rack (middle) ) -
and to a single threaded -
application (red).

ycal

A trusted measurement system

¥ to ensure monitoring is reliable for its chosen purpose

v to enhance models to accurately predict energy consumed
under various scenarios

v to provide faith that in silico explorations of energy savings
within a chip, a rack or a data centre

¥ to empower policy makers (energy caps & charging models)

10dels

A hierarchy of measurements
but also of energy savings

Current research ideas to reduce energy consumed at each

level of the hierarchy include

» modelling of data transfer and cache coherence protocols:
to reduce energy consumed at the chip-set level

» extending TSERO by inclusion of expert knowledge to reduce

ML requirements (number of input data points), increase

the average energy saved: to reduce energy for any given

code

extension of batch schedulers to include DVFS, automatic

power off of “unwanted” nodes, and migration to more
energy efficient platforms.

> lessons from social science to ensure acceptance of energy
caps

https://helward.mmu.ac.uk/STAFF/M.Bane/MSc/
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Energy Efficient Performant

* Performant computing

. Doin% simulations & analyses .
{faster, higher resolution, larger domains, ..}

* Energy Efficient Performant Computing

* Undertaking performant computing whilst
re@uc1n§ energy consumption . . .
(without un-acceptable adverse implications on
e.g. execution times)

* Involves
« HPC, energy measure/predict/reduce,
 social science

(c) Michael Bane, MMU (Dec2021)
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Energy

Reduction
g r—— e Use of Emerging Tech
e {nodes} e Quantify by
e {chipset: measurement (ab
CPU /GPU / FPGA / QC} silico: by prediction)
e {interconnects}
e Cooling

e ML determination of
optimal compile &

run options
e FPGA

Emergi ng e Quantum Computing e Smart scheduling
Tec h e Reduced Precision

e Approximate Computing

(c) Michael Bane, MMU (Dec2021)



e Data centre
e {nodes}
e {chipset:
CPU / GPU / FPGA / QC}
e {interconnects}

eec_archer2

* Example:

Archer2 compute node
2* AMD Rome EPYC chips (each of 64c)

Access to
Performance Monitor Counters (PMCs)

Many tools to profile time
No tools to profile energy

Energy consumed, E = [ P(t)dt
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For given optimisation, this code

* generally goes faster with
more cores

* generally uses less energy
with more cores

BUT

« [least energylis not the[fastest]
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* Tota

| node energy

= Processor cores + RAM + “dark silicon”
For 62c

1.36 kJ

At 103:;

U (Dec2
costs C.

Average power (for node) = 3,830/ 10.08 = 380 Watts
Archer2 has 5,860 nodes ==> 2.2 MW

ence per kW-hr ==> compute electricity
EZM/year (+ cooling at ~10-20%). All savings help!




Energy/Time to Solution Propagate DP

Propagate Energy to Solution vs Time to Sclution (CPU freq as labels)
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Energy/Time to Solution Collide DP
 Haswell chip, LBM
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Energy

Reduction

o Data centre e Use of Emerging Tech
° {nodes} L4 Quantify by
Measu re & e {chipset: measurement (ab
P red iCt CPU / GPU / FPGA / QC} silico: by prediction)

e {interconnects}

e ML determination of
optimal compile &
o EPGA run options

e Quantum Computing e Smart scheduling

® Reduced Precision
e Approximate Computing

(c) Michael Bane, MMU (Dec2021)



ML Tool to Improve EEC

* For given code, coarse controls:
compiler options, run time options
* GCC .v. Intel
* Level of optimisations (-00, -01, ...)
e #cores, OpenMP .v. MPI implementations

* AIM: for given input code, determine set of compiler &
run time options (for given ISA) that gives lowest
energy-to-solution

(c) Michael Bane, MMU (Dec2021)



ML Tool to Improve EEC

* Need: energy-to-solution
* Currently, require ability to measure

* Training
* Run set of benchmarks for various compiler & run time options,
recording energy to solution; 13 benchmarks
* 50 features of code (via ‘perf’)

 Use PCA to select 20 most relevant ({Pearson, Spearman, Kendall}
rank coeffs)

* Feature selection =>» reduce overfitting, reduce time to train

* ML options: linear regression, random forest regression
 Python, sklearn

(c) Michael Bane, MMU (Dec2021)



Pearson's Correlation Coefficient heatmap:
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(c) Michael Bane, MMU (Dec2021)

- M <Red (low correlation) to
P green (+correlation)

| | *Considered perf features:

Run time

CPU clock [walltime]
Task clock

CPU (task) Migrations
I TLB loads

Context Switches
Micro Ops Issues

L2 requests

D TLB store miss
Faults

CPU cycles

Arith

e Tnstructions

L1 D Cache Loads



ML Tool to Improve EEC

* Initial testing
e 20% of initial dataset

 Average diff of energy consumed (predicted .v. actual)

Linear regression = 10.0%
Random Forest reg = 1.8%

* Implementation

 Comparison of best {compiler options, run time options} to

baseline of {{GCC, “-00"},

40 O0penMP threads

N.B. previous work, on 2*20c Intel Skylake
processors per node of U/Liverpool

(c) Michael Bane, I\/IU(DecZOZl)«Bar,kla» (16@ nOdeS + 2@ GPUS)




1D Benchmark Total energy Suggested Total energy | Energy
consumption optimal settings | consumption | efficiency
gain/loss
39 Mantevo 27.15 Joules GEﬂ.d, 11.43 loules | 57.90%
Cloverleaf OpenMP
359 | HPC Challenge 497.20 Joules ICCJ 02140, 497.20 0.0%
Linpack OpenMP Joules
399 | Mantevo 3099.58 ICC, O3427,|MPI 3086.47 0.42%
MiniAero Joules - loules
439 | Mantevo 276.08 Joules GEC-EE,I 198.78 28.00%
MiniMD OpenMP Joules
599 | NASAPEB DC.A 23337.55 ICE,[bE, 21, 20550.26 11.94%
Joules OpenMP Joules
2013 | NASAPB IS.C 438.50 Joules GCC03] 39, 276.07 37.04%
OpenMP Joules
N:;zn ][ I\.lot.’rul!

(c) Michael Bane, MMU (Dec2021)

Average: 22.5% energy saving




ML Tool to Improve EEC

* Next steps

« Improvements to code base [CfACS seed funding]
* Modularise (csv input);
 Investigate/implement static code analysis for given code
 Automate prediction of settings that give least energy to solution

* Current results from Intel Skylake platform
* Training on more platforms
 Test/implement per-platform
« Test/implement x-platform including[GPU & FPGA options

Recent bid (with\
Glasgow) to UKRI
Excalibur “h/w &

(c) Michael Bane, MMU (Dec2021) enabling s/w” Y




ML Tool to Improve EEC

* Next steps

* Current results from Intel Skylake platform
e Training on more platforms
« Test/implement per-platform
« Test/implement x-platform including GPU & FPGA options

* More fine grained compiler options

(c) Michael Bane, MMU (Dec2021)



e Data centre
e {nodes}
e {chipset:
CPU / GPU / FPGA / QC}
e {interconnects}

* Predictors

 Current predictors focus on time
* Work with collabs (Glasgow) to predict energy consumed

e Incorporate within training of ML tool

=>Ability to predict (for given code) what would be best arch and
compiler options for least energy (==> smart x-platform scheduler)
without having to expend compute energy 1in doing so

 super optimisation for energy reduction

* exhaustive search of all possible ISA instructions (for given basic block of
code), using predictor to evaluate energy cost of each option
==> global minimum of energy-to-solution

 selected super optimisation for energy reduction
e S.0. for E.R and make use ofVMEe o '9ensibly prune search tree



Energy

Reduction

o Data centre e Use of Emerging Tech
° {nodes} L4 Quantify by
Measu re & e {chipset: measurement (ab
P red iCt CPU / GPU / FPGA / QC} silico: by prediction)

e {interconnects}

e ML determination of
optimal compile &
e FPGA run options

e Quantum Computing e Smart scheduling

® Reduced Precision
e Approximate Computing

(c) Michael Bane, MMU (Dec2021)



Data Centres

* How reduce carbon footprint?

 Use of renewables & making use of waste heat
* Location location location
* LUMI

* Smart scheduling

* Don’t run what don’t need_to run . .
(re-use data, reproducibility / repro repositories,
AI checking on job)

* Only run vital %obs during ‘peak power’ times (e.g. standard jobs
run when ambient temp drops so less cooling required)

 Social science element
* How integrate “between” data centres?

« How green is the cloud..?

(c) Michael Bane, MMU (Dec2021)



* FPGA

E m e rgi ng e Quantum Computing
TeC h  Reduced Precision

e Approximate Computing

* FPGA

* Low power
Not easy to program

* C/C++ with pragmas, Verilog, VHDL
Previous research

* Porting linear algebra & fintech to FPGA
* [energy results?]

Next steps
* Reduced / variable / mixed precision (w. Manchester, Sorbonne)

Xilinx University Programmexs card;-trainingy;-workshop



* FPGA

E me rgi N g e Quantum Computing
Tec h * Reduced Precision

e Approximate Computing

e Quantum Computing (QC)
* Hype or reality?
* Energy efficient or vastly inefficient [explain]

e Recent bid One of a few ongoing
] collaborations with U/Manchester
* QCS to evaluate use of QC to simulate (other e.g. use of Big Data to
gas/liquid phase changes on atmospheric aerosol analyse aerosol from coughs)

* Potential partnership: Zapata Computing
* If want access, contact me

(c) Michael Bane, MMU (Dec2021)



Energy

Reduction
o Data centre e Use of-Emerging Tech
e {nodes} e Quantify by
e {chipset: measurement (ab
CPU / GPU / FPGA / QC} silico: by prediction)

e {interconnects}

e ML determination of
optimal compile &
e FPGA run options

Emergl ng * Quantum Computing e Smart scheduling
Tec h e Reduced Precision

e Approximate Computing

(c) Michael Bane, MMU (Dec2021)
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